Skip to main content
Log in

Localized L-type calcium channels control exocytosis in cat chromaffin cells

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Depolarizing 1-s pulses to 0 mV from a holding potential of −70 mV, induced whole-cell currents through Ca2+ channels (I Ca) in patch-clamped cat adrenal medulla chromaffin cells. The dihydropyridine (DHP) furnidipine (3 μM) reduced the peak current by 47% and the late current by 80%. ω-Conotoxin GVIA (CgTx, 1 μM) reduced the peak I Ca by 42% and the late I Ca by 55%. Pulses (10 s duration) with 70 mM K+/2.5 mM Ca2+ solution (70 K+/2.5 Ca2+), applied to single fura-2-loaded cat chromaffin cells increased the cytosolic Ca2+ concentration ([Ca2+]i from 0.1 to 2.21 μM; this increase was reduced by 43.7% by furnidipine and by 42.5% by CgTx. In the perfused cat adrenal gland, secretion evoked by 10-s pulses of 70 K+/2.5 Ca2+ was reduced by 25% by CgTx and by 96% by furnidipine. Similar results were obtained when secretion from superfused isolated cat adrenal chromaffin cells was studied and when using a tenfold lower [Ca2+]o. The results are compatible with the existence of DHP-sensitive (L-type) as well as CgTx-sensitive (N-type) voltage-dependent Ca2+ channels in cat chromaffin cells. It seems, howevever, that though extracellular Ca2+ entry through both channel types leads to similar increments of averaged [Ca2+]i, the control of catecholamine release is dominated only by Ca2+ entering through L-type Ca2+ channels. This supports the idea of a preferential segregation of L-type Ca2+ channels to localized “hot spots” in the plasmalemma of chromaffin cells where exocytosis occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alajarin R, Alvarez-Builla J, Vaquero JJ, Sunkel C, Fau de Casa-Juana M, Statkow PR, Sanz-Aparicio J (1993) Synthesis and chromatographic separation of the stereoisomers of furnidipine. Tetrahedron Asymmetry 4:617–620

    Article  CAS  Google Scholar 

  2. Albillos A, Artalejo AR, López MG, Gandía L, García AG, Carbone E (1994) Calcium channel subtypes in cat chromaffin cells. J Physiol (Lond) (in press)

  3. Artalejo CR, García AG, Aunis D (1987) Chromaffin cell calcium channel kinetics measured isotopically through fast calcium, strontium and barium fluxes. J Biol Chem 262:915–927

    CAS  PubMed  Google Scholar 

  4. Artalejo CR, Dahmer MK, Perlman RL, Fox AP (1991) Two types of Ca2+ currents are found in bovine chromaffin cells: facilitation is due to the recruitment of one type. J Physiol (Lond) 432:681–707

    CAS  Google Scholar 

  5. Artalejo CR, Mogul DJ, Perlman RL, Fox AP (1991) Three types of bovine chromaffin cell Ca2+ channels: facilitation increase the opening probability of a 27 pS channel. J Physiol (Lond) 444:213–240

    CAS  Google Scholar 

  6. Artalejo CR, Perlman RL, Fox AP (1992) ω-Conotoxin GVIA blocks a Ca2+ current in bovine chromaffin cells that is not of the “classic” N-type. Neuron 8:85–95

    Article  CAS  PubMed  Google Scholar 

  7. Augustine GJ, Neher E (1992) Calcium requirements for secretion in bovine chromaffin cells. J Physiol (Lond) 450:247–271

    CAS  Google Scholar 

  8. Bading H, Ginty DD, Greenberg ME (1992) Regulation of gene expression in hippocampal neurons by distinct calcium signalling pathways. Science 260:181–186

    Google Scholar 

  9. Ballesta JJ, Palmero M, Hidalgo MJ, Gutierrez LM, Reig JA, Viniegra S, García AG (1989) Separate binding and functional sites for ω-conotoxin and nitrendipine suggest two types of calcium channels in bovine chromaffin cells. J Neurochem 53:1050–1056

    CAS  PubMed  Google Scholar 

  10. Borges R, Sala F, García AG (1986) Continuous monitoring of catecholamine release from perfused cat adrenals. J Neurosci Methods 16:389–400

    Article  Google Scholar 

  11. Bossu JL, De Waard M, Feltz A (1991) Inactivation characteristics reveal two calcium currents in adult bovine chromaffin cells. J Physiol (Lond) 437:603–620

    CAS  Google Scholar 

  12. Bossu JL, De Waard M, Feltz A (1991) Two types of calcium channels are expressed in adult bovine chromaffin cells. J Physiol (Lond) 437:621–634

    CAS  Google Scholar 

  13. Calvo S, Granja R, González-García C, Ceña V (1993) Role of calcium and membrane potential on catecholamine secretion from bovine chromaffin cells. Seventh international symposium on chromaffin cell biology and pharmacology. In: Trifaró JM (ed) University of Ottawa, Ottawa, Canada, p 51

    Google Scholar 

  14. Carbone E, Sher E, Clementi F (1990) Ca currents in human neuroblastoma IMR32 cells: kinetics, permeability and pharmacology. Pflügers Arch 416:170–179

    Article  CAS  PubMed  Google Scholar 

  15. Castillo CJF, Fonteríz RI, López MG, Rosenheck K, García AG (1989) (+)PN200-110 and ouabain binding sites in purified bovine adrenomedullary plasma membranes and chromaffin cells. J Neurochem 53:1442–1449

    CAS  PubMed  Google Scholar 

  16. Clasbrummel B, Osswald H, Illes P (1989) Inhibition of noradrenaline release by ω-conotoxin GVIA in the rat tail artery. Br J Pharmacol 96:101–110

    CAS  PubMed  Google Scholar 

  17. Cohen CJ, McCarthy RT (1987) Nimodipine block of calcium channels in rat anterior pituitary cells. J Physiol (Lond) 387:195–225

    CAS  Google Scholar 

  18. Gandía L, Albillos A, García AG (1993) Bovine chromaffin cells possess FTX-sensitive calcium channels. Biochem Biophys Res Commun 194:671–676

    PubMed  Google Scholar 

  19. García AG, Hernández M, Horga JF, Sánchez-García P (1980) On the release of catecholamines and dopamine beta-hydroxylase evoked by ouabain in the perfused cat adrenal gland. Br J Pharmacol 68:571–583

    PubMed  Google Scholar 

  20. García AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteríz RI, Gandía L (1984) Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 308:69–71

    Google Scholar 

  21. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  22. Hans M, Illes P, Takeda K (1990) The blocking effects of ω-conotoxin on Ca currents in bovine chromaffin cells. Neurosci Lett 114:63–68

    Article  CAS  PubMed  Google Scholar 

  23. Hamill OP, Marty A, Neher E, Sackmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  24. Heinemann C, von Rüden L, Chow RH, Neher E (1993) A two-step model of secretion control in neuroendocrine cells. Pflügers Arch 424:105–112

    Article  CAS  PubMed  Google Scholar 

  25. Hernández-Cruz A, Sala F, Adams PR (1990) Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neurone. Science 247:858–862

    PubMed  Google Scholar 

  26. Hirning LD, Fox AP, McCleskey EW, Olivera BM, Thayer SA, Miller RJ, Tsien RW (1988) Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 239:57–61

    CAS  PubMed  Google Scholar 

  27. Jiménez RR, López MG, Sancho C, Maroto R, García AG (1993) A component of the catecholamine secretory response in the bovine adrenal gland is resistant to dihydropyridine and ω-conotoxin. Biochem Biophys Res Commun 191:1278–1283

    PubMed  Google Scholar 

  28. Llinás R, Sugimori M, Lin JW, Cherksey B (1989) Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnelweb spider poison. Proc Natl Acad Sci USA 86:1689–1693

    PubMed  Google Scholar 

  29. Llinás R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256:677–679

    PubMed  Google Scholar 

  30. Maggi CA, Patacchini R, Santicioli P, Lippe ITh, Giuliani S, Geppeti P, del Bianco E, Selleri S, Meli A (1988) The effect of conotoxin GVIA, a peptide modulator of the N-type voltage-sensitive calcium channels, on motor responses produced by activation of efferent and sensory nerves in mammalian smooth muscle. Naunyn-Schmiedeberg's Arch Pharmacol 338:107–113

    Article  CAS  Google Scholar 

  31. Neher E (1989) Neuromuscular junction. In: Sellin LC, Liblius R, Thesleff S (eds) Elsevier, Amsterdam, pp 65–76

    Google Scholar 

  32. Rüden L von, Neher E (1993) A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262:1061–1065

    Google Scholar 

  33. Sanguinetti MC, Kass RC (1984) Voltage-dependent block of calcium channel current in the calf purkinje fiber by dihydropyridine calcium channel antagonists. Circ Res 55:336–348

    CAS  PubMed  Google Scholar 

  34. Schroeder TJ, Jankowski JA, Wightman M (1993) Flameetched carbon-fiber microelectrodes used to study the localization and kinetic time course of single exocytotic events. Seventh international symposium on chromaffin cell biology and pharmacology. In: Trifaró JM (ed) University of Ottawa, Ottawa, Canada, p 134

    Google Scholar 

  35. Swandulla D, Carbone E, Lux HD (1991) Do calcium channel classifications account for neuronal calcium channel diversity. Trends Neurosci 14:46–51

    Article  CAS  PubMed  Google Scholar 

  36. Tsien RW, Ellinor PT, Horne WA (1991) Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol Sci 12:349–354

    Article  CAS  PubMed  Google Scholar 

  37. Uceda G, Artalejo AR, López MG, Abad F, Neher E, García AG (1992) Ca2+-activated K+ channels modulate muscarinic secretion in cat chromaffin cells. J Physiol (Lond) 454:213–230

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, M.G., Albillos, A., de la Fuente, M.T. et al. Localized L-type calcium channels control exocytosis in cat chromaffin cells. Pflügers Arch 427, 348–354 (1994). https://doi.org/10.1007/BF00374544

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00374544

Key words

Navigation