Skip to main content

Advertisement

Log in

Kinetic properties of skeletal-muscle-like high-threshold calcium currents in a non-fusing muscle cell line

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Macroscopic kinetics and single-channel properties of skeletal-muscle-type calcium currents were studied in the non-fusing, clonal muscle cell line, BC3H1. Slowly activating, dihydropyridine(DHP)-sensitive currents, associated with T-tubular DHP receptors and ion channels, could be isolated from rapidly activating, DHP-resistant currents. Description of macroscopic current activation kinetics required only a brief delay term (τ 0<1 ms), two ascending exponential terms with voltage-dependent time constants (2<τ 1<20 ms and 10<τ 2<200 ms), and a single exponential decay term (0.5<τ 3⩽5 s). Steady-state activation voltage dependence required description by two Boltzmann distribution terms with V 1/2 and slope factors differing by 20 mV and 3.5- to 4-fold respectively. These two distributions were correlated with the steady-state voltage dependence of the two ascending kinetic terms described by τ 1 and τ 2 respectively. Rundown of the DHP-sensitive slow current was correlated with a negative shift in the voltage dependence of current decay (τ 3). Three conductance levels (4.5 pS, 8 pS and 12 pS) were detected in single-channel records, two of which (the 8-pS and 12-pS events) were prolonged by BayK8644 and thus associated with DHP-sensitive single-channel events. Description of single-channel open time distributions required a minimum of two exponential terms (2.5±0.9 ms and 10.3±5.4 ms at −10 mV). Slow transitions among closed states result in biexponential latency-to-first-event distributions (47±12 ms and 470±123 ms at −10 mV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almers W, Fink R, Palade PT (1981) Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization. J Physiol (Lond) 312:177–207

    CAS  Google Scholar 

  2. Avila-Sakar AJ, Cota G, Gamboa-Aldeco R, Garcia J, Huerta M, Muniz J, Stefani E (1986) Skeletal muscle Ca2+ channels. J Muscle Res Cell Motil 7:291–298

    Article  CAS  PubMed  Google Scholar 

  3. Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw Hill, New York

    Google Scholar 

  4. Caffrey JM, Farach MC (1988) A monoclonal antibody specifically modulates dihydropyridine-sensitive calcium current in BC3H1 myocytes. Mol Pharmacol 34:518–526

    CAS  PubMed  Google Scholar 

  5. Caffrey JM, Brown AM, Schneider MD (1987) Mitogens and oncogenes can block the formation of specific voltage-gated ion channels. Science 236:570–574

    CAS  PubMed  Google Scholar 

  6. Caffrey JM, Farach-Cardon MC (1989) Vitamin D3 metabolites modulate dihydropyridine-sensitive calcium current in clonal rat osteosarcomma cell lines. J Biol Chem 264:20 265–20 274

    CAS  Google Scholar 

  7. Caffrey JM, Brown AM, Schneider MD (1989) Ca2+ and Na+ currents in developing skeletal myoblasts are expressed in a sequential program: reversible suppression by transforming growth factor beta-1, an inhibitor of the myogenic pathway. J Neurosci 9:3443–3453

    CAS  PubMed  Google Scholar 

  8. Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 242:50–61

    CAS  PubMed  Google Scholar 

  9. Colquhoun D, Sigworth FJ (1986) Fitting and statistical analysis of single-channel records. In: Sakmann B, Neher E (eds) Single channel recording. Plenum Press, New York, pp 191–263

    Google Scholar 

  10. Cota G, Stefani E (1986) A fast-activated inward current in twitch muscle fibers of the frog (Rana moctezume). J Physiol (Lond) 370:151–183

    CAS  Google Scholar 

  11. Eckert R, Chad J (1987) Inactivation of calcium channels. Prog Biophys Mol Biol 44:215–267

    Google Scholar 

  12. Fenwick E, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol (Lond) 331:599–635

    CAS  Google Scholar 

  13. Flucher BE, Morton ME, Froehner SC, Daniels MP (1990) Localization of the α 1 and α 2 subunits of the dihydropyridine receptor and ankyrin in skeletal muscle triads. Neuron 5:339–351

    Article  CAS  PubMed  Google Scholar 

  14. Gonoi T, Hagesawa S (1988) Postnatal disappearance of transient calcium channels in mouse skeletal muscle: effects of denervation and culture. J Physiol (Lond) 401:617–637

    CAS  Google Scholar 

  15. Hoshi T, Smith SJ (1987) Large depolarization induces long openings of voltage-dependent calcium channels in adrenal chromaffin cells. J Neurosci 7:571–580

    CAS  PubMed  Google Scholar 

  16. Jorgensen AO, Shen AC-Y, Arnold W, Leung AT, Campbell KP (1989) Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol 109:135–147

    Article  CAS  PubMed  Google Scholar 

  17. Kunze DL, Ritchie AK (1990) Multiple conductance levels of the dihydropyridine-sensitive calcium channel in GH3 cells. J Membr Biol 188:171–178

    Google Scholar 

  18. Lacerda AE, Brown AM (1990) Non-modal gating of cardiac calcium channels as revealed by dihydropyridines. J Gen Physiol 93:1243–1273

    Google Scholar 

  19. Lacerda AE, Kim HS, Ruth P, Perez-Reyes E, Flockerzei V, Hofmann F, Birnbaumer L, Brown AM (1991) Normalization of current kinetics by interaction between the α 1, and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature 352:527–530

    Article  CAS  PubMed  Google Scholar 

  20. Ma J, Coronado R (1988) Heterogeneity of conductance states in calcium channels of skeletal muscle. Biophys J 53:387–395

    CAS  PubMed  Google Scholar 

  21. Ma J, Mundina-Weilenmann C, Hosey MM, Rios E (1991) Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. Biophys J 60:890–901

    CAS  PubMed  Google Scholar 

  22. Marks AR, Taubman MB, Saito A, Dai Y, Fleischer S (1991) The ryanodine receptor/junctional channel complex in regulated by growth factors in a myogenic cell line. J Cell Biol 114:303–312

    Article  CAS  PubMed  Google Scholar 

  23. Mejia-Alverez R, Fill M, Stefani E (1991) Voltage-dependent inactivation of T-tubular skeletal muscle calcium channels in planar bilayers. J Gen Physiol 97:393–412

    Google Scholar 

  24. Morton ME, Froehner SC (1987) Monoclonal antibody identifies a 200-kDa subunit of the dihydropyridine-sensitive calcium channel. J Biol Chem 262:11 904–11 907

    CAS  Google Scholar 

  25. Morton ME, Caffrey JM, Brown AM, Froehner SC (1988) Monoclonal antibody to the α 1-subunit of the dihydropyridine-binding complex inhibits calcium currents in BC3H1 myocytes. J Biol Chem 263:613–616

    CAS  PubMed  Google Scholar 

  26. Patlak J, Horn R (1982) Effects of N-bromoacetamide on single sodium channel currents in excised membrane patches. J Gen Physiol 79:333–351

    Article  CAS  PubMed  Google Scholar 

  27. Perez-Reyes E, Wei X, Castellano A, Birnbaumer L (1990) Molecular diversity of L-type calcium channels. J Biol Chem 265:20 430–20 436

    CAS  Google Scholar 

  28. Pieterbon D, Hess P (1990) Novel mechanism of voltage-dependent gating in L-type calcium channels. Nature 346:651–655

    Google Scholar 

  29. Rampe D, Caffrey JM, Schneider MD, Brown AM (1988) Control of expression of the 1,4-dihydropyridine receptor in BC3H1 cells. Biochem Biophys Res Commun 152:769–775

    Article  CAS  PubMed  Google Scholar 

  30. Rios E, Pizarro G (1991) Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev 71:849–908

    CAS  PubMed  Google Scholar 

  31. Sanchez JA, Stefani E (1983) Kinetic properties of calcium channels of twitch muscle fibers of the frog. J Physiol (Lond) 337:1–17

    CAS  Google Scholar 

  32. Schubert D, Harris AJ, Devine CE, Heinemann S (1974) Characterization of a unique muscle cell line. J Cell Biol 61:398–413

    Article  CAS  PubMed  Google Scholar 

  33. Shih H-T, Wathen M, Marshall HB, Caffrey JM, Schneider MD (1990) Dihydropyridine receptor gene expression is regulated by inhibitors of myogenesis and is relatively insensitive to denervation. J Clin Invest 85:781–789

    CAS  PubMed  Google Scholar 

  34. Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kanawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    Article  CAS  PubMed  Google Scholar 

  35. Tanabe T, Beam KG, Adams BA, Niidome T, Numa S (1990) Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346:567–569

    Article  CAS  PubMed  Google Scholar 

  36. Tanabe T, Adams BA, Numa S, Beam KG (1991) Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature 352:800–803

    Article  CAS  PubMed  Google Scholar 

  37. Vandenberg CL, Bezanilla F (1991) A sodium channel gating model based on single channel, macroscopic ionic and gating currents in the squid giant axon. Biophys J 60:1511–1533

    CAS  PubMed  Google Scholar 

  38. Varadi G, Lory P, Schultz D, Varadi M, Schwartz A (1991) Acceleration of activation and inactivation by the β subunit of the skeletal muscle calcium channel. Nature 352:159–162

    Article  CAS  PubMed  Google Scholar 

  39. Yatani A, Imoto YM, Codina J, Hamilton SL, Brown AM, Birnbaumer L (1988) The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Ca+ channels. J Biol Chem 263:9887–9895

    CAS  PubMed  Google Scholar 

  40. Yue DT, Herzig S, Marban E (1990) β-Adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proc Natl Acad Sci USA 87:753–757

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased January 13, 1993

Correspondence to: A. E. Lacerda, Baylor College of Medicine Department of Molecular Physiology and Biophysics, 1 Baylor Plaza, Houston, TX 77030, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caffrey, J.M. Kinetic properties of skeletal-muscle-like high-threshold calcium currents in a non-fusing muscle cell line. Pflügers Arch 427, 277–288 (1994). https://doi.org/10.1007/BF00374535

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00374535

Key words

Navigation