Skip to main content
Log in

Zero-crossing detectors in primary visual cortex?

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

David Marr and others have hypothesized that the visual system processes complex scene information in stages, the first of which involves the detection of light intensity edges or “zero-crossings” (Marr, 1982). Ideal zero-crossing detector mechanisms have been described and modeled in terms of their possible physiological implementation (Marr and Hildreth, 1980; Poggio, 1983). We now present evidence of visual cortical receptive fields which resemble in spatial organizational terms the requirements of zero-crossing analysis. The linear and nonlinear summation within and between the receptive field subunits are described and compared with predicted processes. The relative subunit sizes and separations are analyzed in these terms. Our findings support the notion that receptive fields may correspond with zero-crossing filters rather than zero-crossing detector gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, H.B., Levick, W.R.: The mechanism of directional selective units in rabbits' retina. J. Physiol. (Lond.) 178, 477–504 (1965)

    Google Scholar 

  • Campbell, F.W.C., Robson, J.: Applications of fourier analysis to the visibility of gratings. J. Physiol. (Lond.) 197, 551–566 (1968)

    Google Scholar 

  • Crick, F.H.C., Marr, D.C., Poggio, T.: An information processing approach to understanding the visual cortex. In: The Cerebral Cortex, Schmitt, F.O., Worden, F.G., ed. Cambridge, MA: MIT Press 1981

    Google Scholar 

  • Enroth-Cugell, C., Robson, J.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.) 187, 517–522 (1966)

    Google Scholar 

  • Hildreth, E.: A computer implementation of a theory of edge detection. MIT AI Lab Tech Report 579 (1980)

  • Hochstein, S., Shapley, R.M.: Quantitative analysis of retinal ganglion cell classifications. J. Physiol. (Lond.) 262, 237–264 (1976a)

    Google Scholar 

  • Hochstein, S., Shapley, R.M.: Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J. Physiol. (Lond.) 262, 265–284 (1976b)

    Google Scholar 

  • Koch, C., Poggio, T., Torre, V.: Retinal ganglion cells: a functional interpretation of dendritic morphology. Phil. Trans. R. Soc. London Ser. B 298, 227–264 (1982)

    Google Scholar 

  • Marr, D.: Analysis of occluding contour. Proc. R. Soc. London Ser. B 197, 441–475 (1977)

    Google Scholar 

  • Marr, D.: Early processing of visual information. Phil. Trans. R. Soc. London Ser. B 290, 199–218 (1980)

    Google Scholar 

  • Marr, D.: Vision San Francisco: Freeman 1982

    Google Scholar 

  • Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. London Ser. B, 207, 182–217 (1980)

    Google Scholar 

  • Marr, D., Poggio, T.A.: Cooperative computation of stereo disparity. Science 194, 283–287 (1976)

    Google Scholar 

  • Marr, D., Poggio, T.: From understanding computation to understanding neural circuitry. In: Neuronal mechanisms in visual perception, Poppel, E., Held, R., Dowling, J.E. eds., Neurosci. Res. Prog. Bull. 15, 470–488 (1977)

  • Marr, D., Poggio, T.A.: Computational theory of human stereo vision. Proc. R. Soc. London Ser. B 204, 301–328 (1979)

    Google Scholar 

  • Marr, D., Ullman, S.: Directional selectivity and its use in early visual processing. Proc. R. Soc. London Ser. B 211, 151–180 (1981)

    Google Scholar 

  • Movshon, J.A., Thompson, I.D., Tolhurst, D.J.: Receptive field organization of complex cells in the cat's striate cortex. J. Physiol. (Lond.) 283, 79–99 (1978)

    Google Scholar 

  • Poggio, T.: Visual Algorithms. In: Physical and Biological Processing of Images. pp. 128–153, Braddick, O.J., Sleigh, A.C., eds. 1983

  • Schiller, P.H.: Central connections of the retinal ON and OFF pathways. Nature 297, 580–583 (1982)

    Google Scholar 

  • Sillito, A.M.: The contribution of inhibitory mechanisms to the receptive field properties of neurons in the striate cortex of the cat. J. Physiol. (Lond.) 250, 287–304 (1975)

    Google Scholar 

  • Spitzer, H., Hochstein, S.: Simple and Complex cell response dependences on stimulation parameters. J. Neurophysiol. (in press, 1984a)

  • Spitzer, H., Hochstein, S.: A Complex cell receptive field model. J. Neurophysiol. (in press, 1984b)

  • Stevens, K.A.: The visual interpretation of surface contours. Artif. Intell. 17, 47–74 (1981)

    Google Scholar 

  • Tanaka, K.: Cross-correlation analysis of geniculostriate neuronal relationships in cats. J. Neurophysiol. 49, 1303–1318 (1983)

    Google Scholar 

  • Torre, V., Poggio, T.: A synaptic mechanism possibly underlying directional selectivity. Proc. R. Soc. London Ser. B 202, 409–416 (1978)

    Google Scholar 

  • Ullman, S.: The interpretation of visual motion. MIT Press (1979)

  • Ullman, S.: The interpretation of structure from motion. Proc. Roy. Soc. London Ser. B 203, 405–426 (1979)

    Google Scholar 

  • Wilson, H.R., Bergen, J.R.: A four mechanism model for spatial vision. Vision Res. 19, 19–32 (1979)

    Google Scholar 

  • Wilson, H.R., MacFarlane, D.K., Phillips, G.C.: Spatial frequency tuning of orientation selective units estimated by oblique masking. Vision Res. 23, 873–882 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochstein, S., Spitzer, H. Zero-crossing detectors in primary visual cortex?. Biol. Cybern. 51, 195–199 (1984). https://doi.org/10.1007/BF00346140

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00346140

Keywords

Navigation