Skip to main content
Log in

A myocybernetic control model of skeletal muscle

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A mathematical model of skeletal muscle is presented which contains the two physiological control parameters stimulation rate and motor unit recruitment. The model is complete in the sense that it adequately describes all possible contractive states normally occurring in living muscle. The modelling procedure relies entirely on established myo-physiological facts and each assumption made is substantiated by experimental data. Extensive simulation studies reveal that the model is capable of correctly predicting practically all known phenomena of the muscular force-output. A simplified version of the model is also presented, particularly suitable for inclusion as the driving structure in complex musculoskeletal link systems. This version was successfully tested in the prediction of an optimal human motion. The present control model is believed to fill a gap in the literature on models of muscle, and may be expected to provide a sound basis for research into the optimal control aspects of muscular contraction, and to stimulate such research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R.H., Chandler, W.K., Hodgkin, A.L.: The kinetics of mechanical activation in frog muscle. J. Physiol. 204, 207–230 (1969)

    Google Scholar 

  • Alexander, R.S., Johnson, P.D.: Muscle stretch and theories of contraction. Amer. J. Physiol. 208, 412–416 (1965)

    Google Scholar 

  • Aubert, X.: Le couplage énergétique de la contraction musculaire. Thése d'agregation. Brussels: Arscia 1956

  • Bahler, A.S.: Series elastic component of mammalian skeletal muscle. Amer. J. Physiol. 213, 1560–1564 (1967)

    Google Scholar 

  • Bahler, A.S., Fales, J.T., Zierler, K.L.: The active state of mammalian skeletal muscle. J. gen. Physiol. 50, 2239–2253 (1967)

    Google Scholar 

  • Bahler, A.S., Fales, T.J., Zierler, K.L.: The dynamic properties of mammalian skeletal muscle. J. gen. Physiol. 51, 369–384 (1968)

    Google Scholar 

  • Bahler, A.S.: Modelling of mammalian skeletal muscle. IEEE Trans. Biomed. Eng. BME-15, 249–257 (1968)

    Google Scholar 

  • Bawa, P., Mannard, A., Stein, R.B.: Predictions and experimental tests of a visco-elastic muscle model using elastic and inertial loads. Biol. Cybernetics 22, 139–145 (1976)

    Google Scholar 

  • Bigland, B., Lippold, O.C.J.: Motor unit activity in the voluntary contraction of human muscle. J. Physiol. (Lond.) 125, 322–335 (1954)

    Google Scholar 

  • Buchthal, F., Kaiser, E.: The rheology of the cross triated muscle fibre with particular reference to isotonic conditions. Dan. Biol. Medd. 21, 318 (1951)

    Google Scholar 

  • Carlson, F.D.: Kinematic studies on mechanical properties of muscle. In: Tissue elasticity. Remington, J.W. Washington: Amer. Physiol. Soc. 1957

    Google Scholar 

  • Chow, C.K., Jacobson, D.H.: Studies of human locomotion via optimal programming. Math. Biosci. 10, 239–306 (1971)

    Google Scholar 

  • Close, R.I.: Dynamic properties of mammalian skeletal muscle. Physiol. Rev. 52, 129–197 (1972)

    Google Scholar 

  • Constantin, L.L., Podolsky, R.J.: Evidence for depolarization of the internal membrane system in activation of frog semitendinosus muscle. Nature 210, 483–486 (1966)

    Google Scholar 

  • Crowe, A.: A mechanical model of muscle and its application to the intrafusal fibres of the mammalian muscle spindle. J. Biomech. 3, 583–592 (1970)

    Google Scholar 

  • Del Castillo, J., Katz, B.: Biophysical aspects of neuro-muscular transmission. Progr. Biophys. 6, 121–170 (1956)

    Google Scholar 

  • Délèze, J.B.: The mechanical properties of the semitendinosus muscle at lengths greater then its length in the body. J. Physiol. 158, 154–164 (1961)

    Google Scholar 

  • Desmedt, J.E., Hainaut, K.: Kinetics of myofilament activation in potentiated contraction: Staircase phenomenon in human skeletal muscle. Nature 217, 529–532 (1968)

    Google Scholar 

  • Dragomir, C.T.: On the nature of foreces acting between myofilaments in resting state and under contraction. J. theor. Biol. 27, 343–356 (1970)

    Google Scholar 

  • Ebashi, S., Endo, M.: Calcium and muscle contraction. Progr. Biophys. 18, 123–183 (1968)

    Google Scholar 

  • Eberstein, A., Goodgold, J.: Slow and fast twitch fibres in human skeletal muscle. Amer. J. Physiol. 215, 535–541 (1968)

    Google Scholar 

  • Eccles, J.C.: The understanding of the brain. p. 20. New York: McGraw-Hill 1973

    Google Scholar 

  • Falk, G.: Predicted delays in the activation of the contractile system. Biophys. J. 8, 608–625 (1968)

    Google Scholar 

  • Falk, G., Fatt, P.: Linear electrical properties of striated muscle fibres observed with intracellular electrodes. Proc. Roy. Soc. B 160, 69–123 (1964)

    Google Scholar 

  • Fatt, P.: Skeletal neuromuscular transmission. In: Neurophysiology I. p. 204. Washington: Amer. Physiol. Soc. 1959

    Google Scholar 

  • Fung, Y.C.B.: Mathematical representation of the mechanical properties of heart muscle. J. Biomech. 3, 381–404 (1970)

    Google Scholar 

  • Gillis, J.M.: The site of action of Ca in producing contraction in striated muscle. J. Physiol. 200, 849–864 (1969)

    Google Scholar 

  • Glantz, S.A.: A constitutive equation for the passive properties of muscle. J. Biomech. 7, 137–145 (1974)

    Google Scholar 

  • Gordon, A.M., Huxley, A.F., Julian, F.J.: The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184, 170–192 (1966)

    Google Scholar 

  • Green, D.G.: A note on modelling muscle in physiological regulators. Med. biol. Eng. 7, 41–48 (1969)

    Google Scholar 

  • Hatze, H.: A theory of contraction and a mathematical model of striated muscle. J. theor. Biol. 40, 219–246 (1973)

    Google Scholar 

  • Hatze, H.: A model of skeletal muscle suitable for optimal motion problems. In: Biomechanics IV. (Nelson, R. C., Mourehouse, C.A. Eds.) Int. Ser. Sport Sci. 1, 417–422 (1974)

  • Hatze, H.: Optimal control aspects of the motion of a biological system. Proc. SACAC Symp. Control Theory, Johannesburg (1975)

  • Hatze, H.: The complete optimization of a human motion. Math. Biosci. 28, 99–135 (1976)

    Google Scholar 

  • Haut, R.C., Little, R.W.: A constitutive equation for collagen fibres. J. Biomech. 5, 423–430 (1972)

    Google Scholar 

  • Hefner, L.L., Bowen, T.E.: Elastic components of cat papillary muscle. Amer. J. Physiol. 212, 1221–1227 (1967)

    Google Scholar 

  • Hill, A.V.: The series elastic component of muscle. Proc. Roy. Soc. B 137, 273–280 (1950a)

    Google Scholar 

  • Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. 126B, 136–195 (1938)

    Google Scholar 

  • Hill, A.V.: A discussion on muscular contraction and relaxation: their physical and chemical basis. Proc. Roy. Soc. (Lond.) B 137, 40 (1950b)

    Google Scholar 

  • Hill, T.L.: Theoretical formatlism for the sliding filament model of contraction of striated muscle. Progr. Biophys. 28, 269–340 (1974)

    Google Scholar 

  • Hodgkin, A.L., Horwicz, P.: Potassium contractures in single muscle fibres. J. Physiol. 153, 386–403 (1960)

    Google Scholar 

  • Huxley, A.F.: Muscle structure and theories of contraction. Progr. Biophys. 7, 255–318 (1957)

    Google Scholar 

  • Huxley, A.F., Taylor, R.E.: Local activation of striated muscle fibres. J. Physiol. 144, 426–441 (1958)

    Google Scholar 

  • Huxley, A.F., Peachey, L.D.: Local activation of crab muscle. J. Cell Biol. 23, 107A (1964)

  • Huxley, A.F., Simmons, R. M.: Proposed mechanism of force generation in striated muscle. Nature 233, 533–538 (1971)

    Google Scholar 

  • Jewell, B.R., Wilkie, D.R.: An analysis of the mechanical components in frog's striated muscle. J Physiol. 143, 515–540 (1958)

    Google Scholar 

  • Jewell, B.R., Wilkie, D.R.: The mechanical properties of relaxing muscle. J. Physiol. 152, 30–47 (1960)

    Google Scholar 

  • Jöbsis, F.F., O'Connor, M.J.: Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. Biophys. Res. Commun. 25, 246–252 (1966)

    Google Scholar 

  • Julian, F.J.: The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J. Physiol. 218, 117–145 (1971)

    Google Scholar 

  • Laurie, D.P.: A numerical method for a certain class of improperly posed initial value problems. Int. Rep. 44, NRIMS/W/76/4 (1976)

  • Lowey, S., Slayter, H.S., Weeds, A.G., Baker, H.: Substructure of the myosin molecule. J. molec. Biol. 42, 1–29 (1969)

    Google Scholar 

  • Marsden, C.D., Meadows, J.C., Merton, P.A.: Isolated single motor units in human muscle and thier rate of discharge during maximal voluntary effort. J. Physiol. 217, 12P-13P (1971)

    Google Scholar 

  • Milner-Brown, H.S., Stein, R.B., Yemm, R.: The orderly recruitment of human motor units during voluntary isometric contractions. J. Physiol. 230, 359–370 (1973a)

    Google Scholar 

  • Milner-Brown, H.S., Stein, R.B., Yemm, R.: Changes in firing rate of human motor units during linearly changing voluntary contractions. J. Physiol. 230, 371–390 (1973b)

    Google Scholar 

  • Milner-Brown, H.S., Stein, R.B., Lee, R.G.: Synchronization of human motor units: Possible roles of exercise and supraspinal refflxes. Electroenceph. clin. Neurophysiol. 38, 245–254 (1975)

    Google Scholar 

  • Natori, R.: Effects of Na and Ca ions on the excitability of isolated myofibrils. In: Molecular biology of muscular contration (ed. Ebashi, S. et al.). Amsterdam: Elsevier 1965

    Google Scholar 

  • Needham, D.M. Machina carnis. Cambridge: University Press 1971

    Google Scholar 

  • Norris, F.H.: Isometric relaxation of striated muscle. Amer. J. Physiol. 201, 403–407 (1961)

    Google Scholar 

  • Oğuztöreli, M.N., Stein, R.B.: An analysis of oscillations in neuromuscular systems. J. Math. Biol. 2, 87–105 (1975)

    Google Scholar 

  • Parmley, W.W., Sonnenblick, E.H.: Series elasticity in heart muscle: Its relation to contractile element velocity and proposed muscle models. Circ. Res. 20, 112–123 (1967)

    Google Scholar 

  • Peachey, L.D.: The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J. Cell Biol. 25, 209–231 (1965)

    Google Scholar 

  • Rack, P.M.H., Westbury, D.R.: The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J. Physiol. 204, 443–460 (1969)

    Google Scholar 

  • Ramsey, R.W., Street, S.F.: The isometric length-tension diagram of isolated skeletal muscle fibres of the frog. J. cell. comp. Physiol. 15, 11–34 (1940)

    Google Scholar 

  • Ritchie, J.M., Wilkie, D.R.: The dynamics of muscular contraction. J. Physiol. 143, 104–113 (1958)

    Google Scholar 

  • Soong, T.T., Huang, W.N.: A stochastic model for biological tissue elasticity in simple elongation. J. Biomech 6, 451–458 (1973)

    Google Scholar 

  • Stark, L.: Neurological control systems. p. 311. New York: Plenum Press 1968

    Google Scholar 

  • Stein, R.B., Oğuztöreli, M.N.: Tremor and other oscillations in neuromuscular systems. Biol. Cybernetics 22, 147–157 (1976)

    Google Scholar 

  • Sugi, H.: Tension changes during and after stretch in frog muscle fibres. J. Physiol. 225, 237–253 (1972)

    Google Scholar 

  • Thom, R.: Structural stability and morphogenesis. Massachusetts: Benjamin, 1975

    Google Scholar 

  • Walker, S.M.: Potentiation and hysteresis induced by stretch and subsequent release of papillary muscle of the dog. Amer. J. Physiol. 198, 519–522 (1960)

    Google Scholar 

  • Walsh, G.E.: Physiology of the nervous system. London: Longmans 1964

    Google Scholar 

  • Wilkie, D.R.: The relation between force and velocity in human muscle. J. Physiol. 110, 249–280 (1950)

    Google Scholar 

  • Wilkie, D.R.: Measurement of the series elastic component at various times during a single muscle twitch. J. Physiol. 134, 527–530 (1956)

    Google Scholar 

  • Williams, W.J., Edwin, A.I.: An electronic muscle simulator for demonstration and neuromuscular systems modelling. Med. biol. Eng. 8, 521–524 (1970)

    Google Scholar 

  • Woledge, R.C.: The thermoelastic effect of change of tension in active muscle. J. Physiol. 155, 187–208 (1961)

    Google Scholar 

  • Yamada, H.: Strength of biological materials. Baltimore: Willams, Wilkins 1970

    Google Scholar 

  • Yamashita, T., Frank, A.A.: A study of controllability of body motion in a biped by a linearized model. Proc. Jt. Autom. Control Conf., Austin, Texas (1974)

  • Zomlefer, M.R., Ho, R., Levine, W.S., Zajac, F.E.: A study of the coordination of cat hindlimb muscles during a maximal vertical jump. Proc. IEEE Conf. on Decision and Control, Houston, Texas (1975)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatze, H. A myocybernetic control model of skeletal muscle. Biol. Cybernetics 25, 103–119 (1977). https://doi.org/10.1007/BF00337268

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337268

Keywords

Navigation