Skip to main content
Log in

Contrast mechanisms in photothermal scanning tunneling microscopy

  • Scanning Probe Methods In Materials Science (Part II)
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By irradiation of the tunneling junction of a scanning tunneling microscope with intensity-modulated laser light a gap-width modulation due to thermal expansion of tip and sample was produced. Photothermal images were obtained by spatial mapping of the resulting modulation of the tunneling current or its logarithm. The various mechanisms responsible for the observed contrast are discussed quantitatively. In case of a highly corrugated gold film on mica the contrast arises mainly from either the current variations caused by the non-zero reaction time of the current control loop or from a geometry factor. In both cases the images reflect certain properties of the sample topography. On the other hand, for a liquid-crystal film adsorbed on graphite a contrast on a molecular scale was found which is attributed to variations of the effective barrier height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Simmons: J. Appl. Phys. 34, 1793 (1963)

    Google Scholar 

  2. N.M. Amer, A. Skumanich, D. Ripple: Appl. Phys. Lett. 49, 137 (1986)

    Google Scholar 

  3. G.F.A. van de Walle, H. van Kempen, P. Wyder, P. Davidsson: Appl. Phys. Lett. 50, 22 (1987)

    Google Scholar 

  4. M. Völcker, W. Krieger, H. Walther: Phys. Rev. Lett. 66, 1717 (1991)

    Google Scholar 

  5. A.A. Lucas, P.H. Cutler, T.E. Feuchtwang, T.T. Tsong, T.E. Sullivan, Y. Kuk, H. Nguyen, P.J. Silverman: J. Vac. Sci. Technol. A 6, 461 (1988)

    Google Scholar 

  6. R.J. Hamers, K. Markert: Phys. Rev. Lett. 64, 1051 (1990)

    Google Scholar 

  7. Y. Kuk, R.S. Becker, P.J. Silverman, G.P. Kochanski: Phys. Rev. Lett. 65, 456 (1990)

    Google Scholar 

  8. G.P. Kochanski, R.F. Bell: Surf. Sci. Lett. 273, L435 (1992)

  9. S. Grafström, J. Kowalski, R. Neumann, O. Probst, M. Wörtge: J. Vac. Sci. Technol. B 9, 568 (1991)

    Google Scholar 

  10. J.M.R. Weaver, L.M. Walpita, H.K. Wickramasinghe: Nature 342, 783 (1989)

    Google Scholar 

  11. A rough estimate of the temperature modulation can be obtained by calculating the low-frequency limit. Since, generally, the tip contribution prevails, the temperature modulation can be calculated from the thermal resistance of the tip assuming that its foremost part has a conical shape and neglecting the thermal resistance of the shank: ΔT(ω → 0)≈2P/(λπR focustan2ϕ), where λ denotes the thermal conductivity, R focus the radius of the laser spot, 2ϕ the aperture angle of the tip, and P the absorbed laser power. For typical values of λ=31 W/(m K), R focus=10 μm, ϕ=10°, and P=0.1 mW one obtains ΔT≈7 K. This is rather an upper limit since for high modulation frequencies the temperature modulation drops considerably

  12. S. Grafström, J. Kowalski, R. Neumann: Meas. Sci. Technol. 1, 139 (1990)

    Google Scholar 

  13. S. Grafström, J. Kowalski, R. Neumann, O. Probst, M. Wörtge: J. Vac. Sci. Technol. A 8, 357 (1990)

    Google Scholar 

  14. Controlled geometry Pt/Ir STM tips, Materials Analytical Services, Raleigh, NC, USA

  15. J.M. Gómez-Rodríguez, J. Gómes-Herrero, A.M. Baró: Surf. Sci. 220, 152 (1989)

    Google Scholar 

  16. G. Binnig, H. Rohrer: IBM J. Res. Develop. 30, 355 (1986)

    Google Scholar 

  17. J.S. Foster, J.E. Frommer: Nature 333, 542 (1988)

    Google Scholar 

  18. D.P.E. Smith, J.K.H. Hörber, G. Binnig, H. Nejoh: Nature 344, 641 (1990)

    Google Scholar 

  19. J.H. Coombs, J.B. Pethica: IBM J. Res. Develop. 30, 455 (1986)

    Google Scholar 

  20. H.J. Mamin, E. Ganz, D.W. Abraham, R.E. Thomson, J. Clarke: Phys. Rev. B 34, 9015 (1986)

    Google Scholar 

  21. J.K. Spong, H.A. Mizes, L.J. LaComb Jr, M.M. Dovek, J.E. Frommer, J.S. Foster: Nature 338, 137 (1989)

    Google Scholar 

  22. R. García-García, J.J. Sánez: Surf. Sci. 251/252, 223 (1991)

    Google Scholar 

  23. H. Kemmer, S. Grafström, M. Neitzert, M. Wörtge, R. Neumann, C. Trautmann, J. Vetter, N. Angert: Ultramicroscopy 42–44, 1345 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Probst, O., Grafström, S., Fritz, J. et al. Contrast mechanisms in photothermal scanning tunneling microscopy. Appl. Phys. A 59, 109–113 (1994). https://doi.org/10.1007/BF00332202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00332202

PACS

Navigation