Skip to main content
Log in

Elemental carbon in the atmosphere: challenges for the trace analyst

Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

Elemental carbon is an ubiquitous part of the atmospheric aerosol, originating from all combustion processes. It influences the radiative transfer by its absorbing properties leading to influences on regional climate. While its importance in air chemistry seems to be small there may exist hygienic aspects due to absorbed mutagenic and cancerogenic substances which are not understood completely yet. Soot has unique properties as a tracer for atmospheric transport processes. The mostly hydrophobic character of soot particles influences its life time because it impedes an incorporation into clouds and thus a rapid removal by wet deposition processes. From a literature review a number of tasks for the analyst are formulated concerning improvement of analytical measurement techniques, understanding the change of the surface properties from hydrophobic to hydrophilic, and the use of absorbed substances for source identification which is of importance for a better use of soot as a tracer for atmospheric transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Turco RP, Toon PB, Whitten RC, Pollack JB, Hamill P (1983) In Pruppacher HR, Semonin RG, Slinn WGN (eds) Proc 4th Int Conf Precipitation Scavenging, Dry Deposition and Resuspension. Elsevier, New York, pp 1337–1351

    Google Scholar 

  2. Heintzenberg J (1989) Tellus 41B:149–160

    Google Scholar 

  3. Andreae MO, Andreae TW, Ferek RJ, Raemdonck H (1983) Sci Tot Environ 36:73–80

    Google Scholar 

  4. Heintzenberg J (1985) J Rech Atmos 19:125–129

    Google Scholar 

  5. Hansen ADA, Bodhaine BA, Dutton EG (1988) Geophys Res Lett 15:1193–1196

    Google Scholar 

  6. Clarke AD (1989) Aerosol Sci Technol 10:161–171

    Google Scholar 

  7. Hansen ADA, Rosen H (1984) Geophys Res Lett 11:381–384

    Google Scholar 

  8. Hansen ADA, Novakov T (1988) Global Biogeochem Cycles 3:41–45

    Google Scholar 

  9. Ogren JA, Ahlquist NC, Clarke AD, Charlson RJ (1981) Geophys Res Lett 8:9–12

    Google Scholar 

  10. Wendling P, Wendling R, Renger W, Covert DS, Heintzenberg J, Moerl P (1985) Atmos Environ 19:2181–2193

    Google Scholar 

  11. Hoffmann U, Wilm D (1936) Z Elektrochem angew physik Chem 42:504–522

    Google Scholar 

  12. Countess RJ, Cadle SH, Groblicki PJ, Wolff GT (1981) JAPCA 31:247–252

    Google Scholar 

  13. Heintzenberg J (1982) Atmos Environ 16:2461–2469

    Google Scholar 

  14. Covert DS, Heintzenberg J (1984) Sci Tot Environ 36:347–352

    Google Scholar 

  15. Georgiyevskiy YS, Ivanov I, Kopeykin VM, Sergeyev Y (1986) Izvestiya Atm Nauk 22:646–651

    Google Scholar 

  16. McMurry PH, Zhang XQ (1989) Aerosol Sci Technol 10:430–437

    Google Scholar 

  17. Dalzell WH, Sarofim AF (1969) J Heat Transfer Feb 1969:100–104

    Google Scholar 

  18. Twitty JT, Weinman JA (1971) J Appl Meteor 10:725–731

    Google Scholar 

  19. Janzen J (1979) J Coll Sci 69:436–447

    Google Scholar 

  20. Pluchino AB, Goldberg SS, Dowling JM, Randall CM (1980) Appl Opt 19:3370–3372

    Google Scholar 

  21. Lin C-I, Baker M, Charlson RJ (1973) Appl Opt 12:1356–1363

    Google Scholar 

  22. Clarke AD (1982) Appl Opt 21:3011–3020

    Google Scholar 

  23. Heintzenberg J (1986) Aerosol Sci Technol 8:227–233

    Google Scholar 

  24. Delumyea RG, Chu L-C, Macias ES (1980) Atoms Environ 14:647–652

    Google Scholar 

  25. Rosen H, Hansen ADA, Dod RL, Novakov T (1980) Science 208:741–744

    Google Scholar 

  26. Yaskovich LG (1986) Izvestiya Atm Nauk 22:640–645

    Google Scholar 

  27. Sadler M, Charlson RJ, Rosen H, Novakov T (1981) Atmos Environ 15:1265–1268

    Google Scholar 

  28. Ramsey-Bell DC, Couture G (1985) Appl Opt 24:2397–2400

    Google Scholar 

  29. Clarke AD, Noone K, Heintzenberg J, Warren S, Covert DS (1987) Atmos Environ 21:1455–1465

    Google Scholar 

  30. Foot JS, Kilsby CG (1989) Atmos Environ 23:489–495

    Google Scholar 

  31. Lawson DR, Hering SV (1990) Aerosol Sci Technol 12:1–2

    Google Scholar 

  32. Pimenta JA, Wood GR (1980) Environ Sci Technol 14:556–561

    Google Scholar 

  33. Ferm M, Galle B (1982) Report Swedish Institute for Water and Air Research (in Swedish)

  34. Tanner RL, Gaffney JS, Phillips MF (1982) Anal Chem 54:1627–1630

    Google Scholar 

  35. Cachier H, Bremond M-P, Buat-Ménard P (1989) Tellus 41B:379–390

    Google Scholar 

  36. Bennett CA Jr, Patty RR, McClenny WA (1981) Appl Opt 20:3475–3477

    Google Scholar 

  37. Melton LA (1984) Appl Opt 23:2201–2208

    Google Scholar 

  38. Rosen H, Hansen ADA, Gundel L, Novakov T (1978) Appl Opt 17:3859–3861

    Google Scholar 

  39. Blanchet J-P, Heintzenberg J, Winkler P (1986) Contrib Atmos Phys 59:359–374

    Google Scholar 

  40. Grassl H (1975) Contrib Atmos Phys 48:199–210

    Google Scholar 

  41. Grassl H (1980) Ann Meteor 15:39–42

    Google Scholar 

  42. Grassl H (1988) In: Hobbs PV, McCormick MP (eds) Aerosols and climate. Deepak, Hampton, Virginia

    Google Scholar 

  43. Ackermann T, Baker MB (1977) J Appl Meteor 16:63–69

    Google Scholar 

  44. Chylek P, Ramaswamy V, Srivastava V (1983) J Geophys Res 88:10837–10843

    Google Scholar 

  45. Blanchet JP, List R (1987) Tellus 39B:293–317

    Google Scholar 

  46. Srivastava V, Chylek P, Pinnick RG, Dod RL, Novakov T (1989) Aerosol Sci Technol 10:151–160

    Google Scholar 

  47. Chang SG, Novakov T (1983) In: Schwartz SE (ed) Trace atmospheric constituents. Wiley, New York

    Google Scholar 

  48. Matsson JS, Mark HB Jr (1971) Activated carbon. Dekker, New York

    Google Scholar 

  49. de Wiest F, Brull PM (1980) In: Benarie MM (ed) Proc 14th Int Unesco Colloquium, Elsevier, Amsterdam, pp 227–232

    Google Scholar 

  50. Novakov T, Chang SG, Harker AB (1974) Science 186:259–261

    Google Scholar 

  51. Britton LG, Clarke AD (1980) Atmos Environ 14:829–839

    Google Scholar 

  52. Chang SG, Toossi R, Novakov T (1981) Atmos Environ 15:1287–1292

    Google Scholar 

  53. Cofer WR, Schryer DR, Rogowski RS (1980) Atmos Environ 14:571–575

    Google Scholar 

  54. Cofer WR, Schryer DR, Rogowski RS (1981) Atmos Environ 15:1281–1286

    Google Scholar 

  55. Benner WH, Brodzinsky R, Novakov T (1982) Atmos Environ 16:1333–1339

    Google Scholar 

  56. Harrison RM, Pio CA (1983) Atmos Environ 17:1262–1275

    Google Scholar 

  57. Kamens RM, Guo Z, Fulcher JN, Bell DA (1988) Environ Sci Technol 22:103–108

    Google Scholar 

  58. Harkov R, Greenberg A (1985) JAPCA 35:238–243

    Google Scholar 

  59. Osadchii AI, Shilina AI, Malakhov SG (1980) Meteorol Gidrol 4:66–72

    Google Scholar 

  60. Kertesz-Saringer M, Mészaros E, Varkonyi T (1971) Atmos Environ 5:429–431

    Google Scholar 

  61. Miguel AH, Friedlander SK (1980) In: Björseth A, Dennis AJ (eds) Polynuclear aromatic hydrocarbons: Proc 14th Int Symposium-Chemistry and Biological Effects. Batelle Press, Columbus, Ohio, pp 1077–1083

    Google Scholar 

  62. Brosset C, Nyberg A (1971) In: England HM, Beery WT (eds) Proc 2nd Int Clean Air Conference. Academic Press, New York, p 481

    Google Scholar 

  63. Rodhe H, Persson C, Åkesson O (1972) Atmos Environ 6:1–19

    Google Scholar 

  64. Swietlicki E (1989) European source region identification of long range transported ambient aerosol based on PIXE analysis and related techniques. Ph. D. Thesis. Lund University, Sweden

    Google Scholar 

  65. Dragoescu C, Friedlander S (1989) Aerosol Sci Technol 10:249–257

    Google Scholar 

  66. Heintzenberg J, Bigg EK (1990) Tellus 42B:355–363

    Google Scholar 

  67. Charlson RJ, Ogren JA (1982) In: Wolff GT, Klimisch RL (eds) Particulate carbon atmospheric life cycle. Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heintzenberg, J., Winkler, P. Elemental carbon in the atmosphere: challenges for the trace analyst. Fresenius J Anal Chem 340, 540–543 (1991). https://doi.org/10.1007/BF00322425

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00322425

Keywords

Navigation