Skip to main content
Log in

Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The GGS1/TPS1 gene of the yeast Saccharomyces cerevisiae encodes the trehalose-6-phosphate synthase subunit of the trehalose synthase complex. Mutants defective in GGS1/TPS1 have been isolated repeatedly and they showed variable pleiotropic phenotypes, in particular with respect to trehalose content, ability to grow on fermentable sugars, glucose-induced signaling and sporulation capacity. We have introduced the fdp1, cif1, byp1 and glc6 alleles and the ggs1/tps1 deletion into three different wild-type strains, M5, SP1 and W303-1A. This set of strains will aid further studies on the molecular basis of the complex pleiotropic phenotypes of ggs1/tps1 mutants. The phenotypes conferred by specific alleles were clearly dependent on the genetic background and also differed for some of the alleles. Our results show that the lethality caused by single gene deletion in one genetic background can become undetectable in another background. The sporulation defect of ggs1/tps1 diploids was neither due to a deficiency in G1 arrest, nor to the inability to accumulate trehalose. Ggs1/tps1 Δ mutants were very sensitive to glucose and fructose, even in the presence of a 100-fold higher galactose concentration. Fifty-percent inhibition occurred at concentrations similar to the Km values of glucose and fructose transport. The inhibitory effect of glucose in the presence of a large excess of galactose argues against an overactive glycolytic flux as the cause of the growth defect. Deletion of genes of the glucose carrier family shifted the 50% growth inhibition to higher sugar concentrations. This finding allows for a novel approach to estimate the relevance of the many putative glucose carrier genes in S. cerevisiae. We also show that the GGS1/TPS1 gene product is not only required for the transition from respirative to fermentative metabolism but continuously during logarithmic growth on glucose, in spite of the absence of trehalose under such conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bañuelos M, Fraenkel DG (1982) Mol Cell Biol 2:921–929

    Google Scholar 

  • Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, Van der Zee P, Wiemken A (1992) Eur J Biochem 209:951–959

    Google Scholar 

  • Berben G, Dumont J, Gilliquet V, Bolle P-A, Hilger F (1991) Yeast 7:475–477

    Google Scholar 

  • Bisson LF, Fraenkel DG (1983) Proc Natl Acad Sci USA 80:1730–1734

    Google Scholar 

  • Bisson LF, Neigeborn L, Carlson M, Fraenkel DG (1987) J Bacteriol 169:1656–1662

    Google Scholar 

  • Bisson LF, Coons DM, Kruckeberg AI, Lewis DA (1993) Crit Rev Biochem Mol Biol 28:259–308

    Google Scholar 

  • Blázquez MA, Gancedo C (1994) Curr Genet 25:89–94

    Google Scholar 

  • Blázquez MA, Lagunas R, Gancedo C, Gancedo JM (1993) FEBS Lett 329:51–54

    Google Scholar 

  • Breitenbach-Schmitt I, Schmitt HD, Heinisch J, Zimmermann FK (1984) Mol Gen Genet 195:536–540

    Google Scholar 

  • Cannon JF, Pringle JR, Fiechter A, Khalil M (1994) Genetics 136: 485–503

    Google Scholar 

  • Celenza JL, Marshall-Carlson L, Carlson M (1988) Proc Natl Acad Sci USA 85:2130–2134

    Google Scholar 

  • Charlab R, Oliveira DE, Panek AD (1985) Braz J Med Biol Res 18: 447–454

    Google Scholar 

  • De Virgilio C, Simmen U, Hottiger T, Boller T, Wiemken A (1990) FEBS Lett 273:107–110

    Google Scholar 

  • De Virgilio C, Bürckert N, Bell W, Jenö P, Boller T, Wiemken A (1993) Eur J Biochem 212:315–323

    Google Scholar 

  • François J, Villanueva ME, Hers HG (1988) Eur J Biochem 174:551–559

    Google Scholar 

  • François J, Neves MJ, Hers HG (1991) Yeast 7:575–587

    Google Scholar 

  • Gancedo JM, Gancedo C (1971) Arch Microbiol 76:132–138

    Google Scholar 

  • Gietz RD, Sugino A (1988) Gene 74:527–534

    Google Scholar 

  • González MI, Stucka R, Blázquez MA, Feldmann H, Gancedo C (1992) Yeast 8:183–192

    Google Scholar 

  • Herskowitz I, Jensen RE (1991) Methods Enzymol 194:132–146

    Google Scholar 

  • Hohmann S, Huse K, Valentin E, Mbonyi K, Thevelein JM, Zimmermann FK (1992) J Bacteriol 174:4183–4188

    Google Scholar 

  • Hohmann S, Neves MJ, de Koning W, Alijo R, Ramos J, Thevelein JM (1993) Curr Genet 23:281–289

    Google Scholar 

  • Hohmann S, Van Dijck P, Luyten K, Thevelein JM (1994) Curr Genet (in press)

  • Kane SM, Roth RM (1974) J Bacteriol 118:8–14

    Google Scholar 

  • Ko CH, Liang H, Gaber RF (1993) Mol Cell Biol 13:638–648

    Google Scholar 

  • Kruckeberg AL, Bisson LF (1990) Mol Cell Biol 10:5903–5913

    Google Scholar 

  • Kuo SC, Christensen MS, Cirillo VP (1970) J Bacteriol 103:671–678

    Google Scholar 

  • Lewis DA, Bisson LF (1991) Mol Cell Biol 11:3804–3813

    Google Scholar 

  • Manning AM, Rosenblom CL, Beaudet AL (1992) EMBL accession number MM88172

  • McDougall J, Kaasen I, Strøm AR (1993) FEMS Microbiol Lett 107:25–30

    Google Scholar 

  • Murray AW, Szostak JW (1983) Cell 34:961–970

    Google Scholar 

  • Navon G, Shulman RG, Yamane T, Eccleshal TR, Lam K-B, Baronofsky JJ, Marmur J (1979) Biochemistry 18:4487–4499

    Google Scholar 

  • Neves MJ, Jorge JA, François JM, Terenzi HF (1991) FEBS Lett 283: 19–22

    Google Scholar 

  • Poll KW van de, Schamhart DJH (1977) Mol Gen Genet 154:61–66

    Google Scholar 

  • Poll KW van de, Kerkenaar A, Schamhart DHJ (1974) J Bacteriol 117:965–970

    Google Scholar 

  • Popolo L, Vanoni M, Alberghina L (1982) Exp Cell Res 142:69–78

    Google Scholar 

  • Prior C, Fukuhara H, Blaisonneau J, Wesolowski-Louvel M (1993) Yeast 9:1373–1377

    Google Scholar 

  • Ramos J, Szkutnicka K, Cirillo VP (1988) J Bacteriol 170:5375–5377

    Google Scholar 

  • Roth R (1970) J Bacteriol 101:53–57

    Google Scholar 

  • Rothstein RJ (1983) Methods Enzymol 101:202–211

    Google Scholar 

  • Schaaff I, Green JBA, Gozalbo D, Hohmann S (1989) Curr Genet 15:75–81

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sols A (1976) The Pasteur effect in the allosteric era. In: Kornberg A et al. (eds) Reflections in biochemistry. Pergamon Press, Oxford, pp 199–206

    Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

  • Sur IP, Lobo Z, Maitra PK (1994) Yeast 10:199–209

    Google Scholar 

  • Thevelein JM (1988) Exp Mycol 12:1–12

    Google Scholar 

  • Thevelein JM (1992) Ant van Leeuwenhoek 62:109–130

    Google Scholar 

  • Thomas BJ, Rothstein R (1989) Cell 56:619–630

    Google Scholar 

  • Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M (1995) Cell 40:27–36

    Google Scholar 

  • Van Aelst L, Hohmann S, Zimmermann FK, Jans AWH, Thevelein JM (1991) EMBO J 10:2095–2104

    Google Scholar 

  • Van Aelst L, Hohmann S, Bulaya B, de Koning W, Sierkstra L, Neves MJ, Luyten K, Alijo R, Ramos J, Coccetti P, Martegani E, de Magalhães-Rocha NM, Brandão RL, Van Dijck P, Vanhalewyn M, Durnez P, Jans AWH, Thevelein JM (1993) Mol Microbiol 8: 927–943

    Google Scholar 

  • Vandercammen A, François J, Hers H-G (1989) Eur J Biochem 182: 613–620

    Google Scholar 

  • Vuorio OE, Kalkkinen N, Londesborough J (1993) Eur J Biochem 216:849–861

    Google Scholar 

  • Zakian VA, Kupfer DM (1982) Plasmid 8:15–28

    Google Scholar 

  • Zamenhoff S (1957) Methods Enzymol 3:696–704

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. K. Zimmermann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neves, M.J., Hohmann, S., Bell, W. et al. Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. Curr Genet 27, 110–122 (1995). https://doi.org/10.1007/BF00313424

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00313424

Key words

Navigation