Skip to main content
Log in

Immunocytochemical localization of serotonin and photoreceptor-specific proteins (rod-opsin, S-antigen) in the pineal complex of the river lamprey, Lampetra japonica, with special reference to photoneuroendocrine cells

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The pineal complex of the river lamprey, Lampetra japonica, was examined by means of immunocytochemistry with antisera against serotonin, the precursor of melatonin, and two photoreceptor proteins, rod-opsin (the apoprotein of the photopigment rhodopsin) and S-antigen. Serotonin-immunoreactive cells were observed in both the pineal and the parapineal organ. The proximal portion of the pineal organ (atrium) comprised numerous serotonin-immunoreactive cells displaying spherical somata. In the distal end-vesicle of the pineal organ, the serotonin-immunoreactive elements resembled photoreceptors in their size and shape. These cells projecting into the pineal lumen and toward the basal lamina were especially conspicuous in the ventral portion of the end-vesicle. In addition, single serotonin-immunoreactive nerve cells were found in this location. Retinal photoreceptors were never seen to contain immunoreactive serotonin; amacrine cells were the only retinal elements exhibiting serotonin immunoreaction. Strong S-antigen immunoreactivity was found in numerous photoreceptors located in the pineal end-vesicle. In contrast, the S-antigen immunoreactivity was weak in the spherical cells of the atrium. Thus, the pattern of S-antigen immunoreactivity was roughly opposite to that of serotonin. Similar findings were obtained in the parapineal organ. The rod-opsin immunoreaction was restricted to the outer segments of photoreceptors in the pineal end-vesicle and parapineal organ. No rodopsin immunoreactive outer segments occurred in the proximal portion of the atrium. Double immunostaining was employed to investigate whether immunoreactive opsin and serotonin are colocalized in one and the same cell. This approach revealed that (i) most of the rodopsin-immunoreactive outer segments in the end-vesicle belonged to serotonin-immunonegative photoreceptors; (ii) nearly all serotonin-immunoreactive cells in the end-vesicle bore short rod-opsin-immunoreactive outer segments protruding into the pineal lumen; and (iii) the spherical serotonin-immunoreactive cells in the pineal stalk lacked rod-opsin immunoreaction and an outer segment. These results support the concept that multiple cell lines of the photoreceptor type exist in the pineal complex at an early evolutionary stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brecha N (1983) A review of retinal neurotransmitters: Histochemical and biochemical studies. In: Emson PC (ed) Neurochemical anatomy. Raven Press, New York, pp 85–129

    Google Scholar 

  • Cole WC, Youson JH (1982) Morphology of the pineal complex of the anadromous sea lamprey, Petromyzon marinus. Am J Anat 165:131–163

    Google Scholar 

  • Collin J-P (1969) Contribution à l'étude de l'organe pinéal. De l'épiphyse sensorielle à la glande pinéale: Modalités de transformation et implication fonctionnelles. Ann Stat Biol Besse-en-Chandesse (Suppl) 1:1–359

    Google Scholar 

  • Collin J-P (1971) Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. In: Wolstenholme GEW, Knight J (eds) The pineal gland. Churchill-Livingstone, Edinburgh, London, pp 79–125

    Google Scholar 

  • Collin J-P, Oksche A (1981) Structural and functional relationships in the nonmammalian pineal gland, Vol. 1: Anatomy and biochemistry. CRC Press, Boca Raton, pp 27–67

    Google Scholar 

  • Deguchi T (1979) Circadian rhythm of serotonin N-acetyltransferase activity in organ culture of chicken pineal gland. Science 203:1245–1247

    Google Scholar 

  • Deguchi T (1981) Rhodopsin-like photosensitivity of the isolated chicken pineal gland. Nature 290:706

    Google Scholar 

  • Ekström P (1987) Photoreceptors and CSF-contacting neurons in the pineal organ of a teleost fish have direct axonal connections with the brain: An HRP-electron microscope study. J Neurosci 7:987–995

    Google Scholar 

  • Ekström P, Korf HW (1985) Pineal neurons projecting to the brain of the rainbow trout, Salmo gairdneri Richardson (Teleostei). In vitro retrograde filling with horseradish peroxidase. Cell Tissue Res 240:693–700

    Google Scholar 

  • Ekström P, Korf HW (1986a) Substance P-like immunoreactive neurons in the photosensory pineal organ of the rainbow trout, Salmo gairdneri Richardson (Teleostei). Cell Tissue Res 246:359–364

    Google Scholar 

  • Ekström P, Korf HW (1986b) Putative cholinergic elements in the photosensory pineal organ and retina of a teleost, Phoxinus phoxinus L. (Cyprinidae). Cell Tissue Res 246:321–329

    Google Scholar 

  • Ekström P, Meissl H (1990) Electron microscopic analysis of S-antigen and serotonin-immunoreactive neural and sensory elements in the photosensory pineal organ of the salmon. J Comp Neurol 292:73–82

    Google Scholar 

  • Ekström P, Foster RG, Korf HW, Schalken JJ (1987) Antibodies against retinal photoreceptor-specific proteins reveal axonal projections from the photosensory pineal organ in teleosts. J Comp Neurol 265:25–33

    Google Scholar 

  • Eldred WD, Nolte J (1981) Multiple classes of photoreceptors and neurons in the frontal organ of Rana pipiens. J Comp Neurol 203:269–295

    Google Scholar 

  • Falcon J (1984) Identification et propriétes des cellules photoneuroendocrines de l'organe pinéal. Thesis, University of Poitiers

  • Guerlotte J, Falcon J, Voisin P, Collin J-P (1986) Indoles in the photoreceptor cells of the lamprey pineal complex. Ann d'Endocrinol 47:62–64

    Google Scholar 

  • Hamm HE, Takahashi JS, Menaker M (1983) Light-induced decrease of serotonin N-acetlytransferase activity and melatonin in the chicken pineal gland and retina. Brain Res 266:287–293

    Google Scholar 

  • Hartwig HG, Oksche A (1981) Photoneuroendocrine cells and systems: A concept revisited. In: Oksche A, Pévet P (eds) The pineal organ: photobiology-biochronometry-endocrinology. Elsevier, Amsterdam, pp 49–59

    Google Scholar 

  • Joss JMP (1973) The pineal complex, melatonin, and color change in the lamprey Lampetra. Gen Comp Endocrinol 21:188–195

    Google Scholar 

  • Joss JMP (1977) Hydroxyindole-O-methyltransferase (HIOMT) activity and the uptake of 3H-melatonin in the lamprey, Geotria australis Gray. Gen Comp Endocrinol 31:270–275

    Google Scholar 

  • Korf HW (1974) Acetylcholinesterase-positive neurons in the pineal and parapineal organs of the rainbow trout, Salmo gairdneri (with special reference to the pineal tract). Cell Tissue Res 155:475–489

    Google Scholar 

  • Korf HW (1976) Histological, histochemical and electron microscopical studies on the nervous appratus of the pineal organ in the tiger salamander, Ambystoma tigrinum. Cell Tissue Res 174:475–497

    Google Scholar 

  • Korf HW (1986) Zur Frage photoneuroendokriner Zellen und Systeme: Vergleichende Untersuchungen am Pinealkomplex. Habilitationsschrift, Fachbereich Humanmedizin, Giessen

    Google Scholar 

  • Korf HW, Ekström P (1987) Photoreceptor differentiation and neuronal organization of the pineal organ. In: Trentini GP, Gaetani C de, Pévet P (eds) Fundamentals and clinics in pineal research. Raven Press, New York, pp 35–47

    Google Scholar 

  • Korf HW, Oksche A (1986a) Photoneuroendocrine aspects of the pineal gland: phylogeny and ontogeny. In: Gupta D, Reiter RJ (eds) The pineal gland during development: From fetus to adult. Croom Helm, London, pp 1–13

    Google Scholar 

  • Korf HW, Oksche A (1986b) The pineal organ. In: Pang PKT, Schreibman MP (eds) Vertebrate endocrinology. Fundamentals and biomedical implications. Vol. 1. Morphological considerations. Academic Press, Orlando, pp 105–145

    Google Scholar 

  • Korf HW, Liesner R, Meissl H, Kirk A (1981) Pineal complex of the clawed toad, Xenopus laevis Daud.: Structure and function. Cell Tissue Res 216:113–130

    Google Scholar 

  • Korf HW, Foster RG, Ekström P, Schalken JJ (1985a) Opsin-like immunoreaction in the retinae and pineal organs of four mammalian species. Cell Tissue Res 242:645–648

    Google Scholar 

  • Korf HW, Møller M, Gery I, Zigler JS, Klein DC (1985b) Immunocytochemical demonstration of retinal-S-antigen in the pineal organ of four mammalian species. Cell Tissue Res 239:81–85

    Google Scholar 

  • Kuo C-H, Tamotsu S, Morita Y, Shinozawa T, Akiyama M, Miki N (1988) Presence of retina-specific proteins in the lamprey pineal complex. Brain Res 442:147–151

    Google Scholar 

  • Meiniel A (1973) L'épiphyse et l'oeil pariétal de l'embryon de Lacerta vivipara. J. Recherche qualitative des monoamines en fluorescence ultraviolette et incorporation de 5-hydroxytryptophane-3 (= 5 HTP-3) au niveau des photorecepteurs rudimentaires sécrétoires. Arch Anat Histol Embryol Norm Exp 56:111–130

    Google Scholar 

  • Meiniel A (1976) Contribution à l'étude du complexe pariétal embryonnaire des lacertiliens. Différenciation cellulaire de l'épiphyse de Lacerta vivipara (Jacquin) en rapport avec les activités sensorielle, sécrétoire et neurohumorale (biosynthèses indoliques). Thesis University Clermont Fr

  • Meiniel A (1979) Detection and localization of biogenic amines in the pineal complex of Lampetra planeri (Petromyzontidae). Prog Brain Res 52:303–307

    Google Scholar 

  • Meiniel A (1980) Ultrastructure of serotonin-containing cells in the pineal organ of Lampetra planeri (Petromyzontidae). Cell Tissue Res 207:407–427

    Google Scholar 

  • Meiniel A (1981) New aspects of the phylogenetic evolution of sensory cell lines in the vertebrate pineal complex. In: Oksche A, Pévet P (eds) The pineal organ: photobiology-biochronometry-endocrinology. Elsevier, Amsterdam, pp 27–48

    Google Scholar 

  • Meiniel A, Hartwig HG (1980) Indoleamines in the pineal complex of Lampetra planeri (Petromyzontidae). A fluorescence microscopic and microspectrofluorimetric study. J Neural Transm 48:65–83

    Google Scholar 

  • Meissl H, George SR (1985) Effect of GABA and its antagonists, bicuculline and picrotoxin, on nerve cell discharges of the photosensory pineal organ of the frog, Rana esculenta. Brain Res 332:39–46

    Google Scholar 

  • Møller M, Glistrup OV, Olsen W (1983) Contrast enhancement of the brownish horseradish peroxidase-activated 3,3-diaminobenzidine tetrahydrochloride reaction product in black and white photomicrography by use of interference filters. J Histochem Cytochem 32:37–42

    Google Scholar 

  • Morita Y, Dodt E (1971) Photosensory responses from the pineal eye of the lamprey (Petromyzon fluviatilis). Proc Int Un Physiol Sci 9:405

    Google Scholar 

  • Morita Y, Dodt E (1973) Slow photic responses of the isolated pineal organ of lamprey. Nova Acta Leopoldina 38:331–339

    Google Scholar 

  • Morita Y, Tabata M, Tamotsu S (1985) Intracellular response and input resistance change of pineal photoreceptors and ganglion cells. Neurosci Res 2 (Suppl):S79-S88

    Google Scholar 

  • Morita Y, Samejima M, Uchida K (1987) The role of direct photosensory pineal organ in the LD and circadian rhythm. In: Hiroshige T, Honma K (eds) Comparative aspects of circadian clocks. Hokkaido University Press, Sapporo, pp 73–81

    Google Scholar 

  • Morita Y, Tamotsu S, Uchida K (1989) Multiplicity of electrophysiological and immunocytochemical properties in the pineal photosensory system. In: Reiter RJ, Pang SF (eds) Adv Pineal Res, Vol 3. Libbey, London, pp 43–48

    Google Scholar 

  • Oksche A (1970) Zur Differenzierung sensorischer und sekretorischer Strukturelemente im Zentralnervensystem. Verh Dt Zool Ges 64:72–79

    Google Scholar 

  • Oksche A (1971) Sensory and glandular elements of the pineal organ. In: Wolstenholme GEW, Knight J (eds) The pineal gland. Churchill Livingstone, Edinburgh, London, pp 127–146

    Google Scholar 

  • Oksche A (1986) Historical perspectives of photoneuroendocrine systems. In: O'Brien P, Klein DC (eds) Pineal and retinal relationships. Academic Press, Orlando, pp 1–13

    Google Scholar 

  • Oksche A, Hartwig HG (1979) Pineal sense organs—components of photoneuroendocrine systems. Prog Brain Res 52:113–130

    Google Scholar 

  • Paul E, Hartwig HG, Oksche A (1971) Neurone und zentralnervöse Verbindungen des Pinealorgans der Anuren. Z Zellforsch 112:466–493

    Google Scholar 

  • Pu GA, Dowling JE (1981) Anatomical and physiological characteristics of pineal photoreceptor cells in the larval lamprey, Petromyzon marinus. J Neurophysiol 46:1018–1038

    Google Scholar 

  • Robertson LM, Takahashi JS (1988) Circadian clock in cell culture: I. Oscillation of melatonin release from dissociated chick pineal cells in flow-through microcarrier culture. J Neurosci 8:12–21

    Google Scholar 

  • Rodríguez EM, Korf HW, Oksche A, Yulis CR, Hein S (1988) Pinealocytes immunoreactive with antisera against secretory glycoproteins of the subcommissural organ: A comparative study. Cell Tissue Res 254:469–480

    Google Scholar 

  • Sternberger LA, Hardy PH, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-anti horseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    Google Scholar 

  • Tamotsu S, Morita Y (1986) Photoreception in pineal organs of larval and adult lampreys, Lampetra japonica. J Comp Physiol A159:1–5

    Google Scholar 

  • Tamotsu S, Morita Y (1990) Blue sensitive visual pigment and photoregeneration in pineal photoreceptors measured by high performance liquid chromatography. Comp Biochem Physiol 96B:487–490

    Google Scholar 

  • Tretjakoff D (1915) Die Parietalorgane von Petromyzon fluviatilis. Z Wiss Zool 113:1–112

    Google Scholar 

  • Vigh-Teichmann I, Korf HW, Nürnberger F, Oksche A, Vigh B, Olsson R (1983) Opsin-immunoreactive outer segments in the pineal and parapineal organs of the lamprey (Lampetra fluviatilis), the eel (Anguilla anguilla) and the rainbow trout (Salmo gairdneri). Cell Tissue Res 230:289–307

    Google Scholar 

  • Wainwright SD, Wainwright LK (1980) Regulation of the cycle in chick pineal serotonin N-acetyltransferase activity in vitro by light. J Neurochem 35:451–457

    Google Scholar 

  • Wake K (1973) Acetylcholinesterase-containing nerve cells and their distribution in the pineal organ of the goldfish Carassius auratus. Z Zellforsch 145:287–298

    Google Scholar 

  • Wake K, Ueck M, Oksche A (1974) Acetylcholinesterase-containing nerve cells in the pineal complex and subcommissural area of the frogs, Rana ridibunda and Rana esculenta. Cell Tissue Res 154:423–442

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamotsu, S., Korf, H.W., Morita, Y. et al. Immunocytochemical localization of serotonin and photoreceptor-specific proteins (rod-opsin, S-antigen) in the pineal complex of the river lamprey, Lampetra japonica, with special reference to photoneuroendocrine cells. Cell Tissue Res 262, 205–216 (1990). https://doi.org/10.1007/BF00309875

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309875

Key words

Navigation