Skip to main content
Log in

Pea chloroplast genes encoding a 4kDa polypeptide of photosystem I and a putative enzyme of C1 metabolism

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The nucleotide sequence of 3.2 kbp of pea chloroplast DNA located upstream from the petA gene for cytochrome f, and previously reported to contain the gene for a photosystem I polypeptide, has been determined. Three open reading frames of 587, 40 and 157 codons have been identified. Orf40 encodes a highly conserved, hydrophobic, membrane-spanning polypeptide, and is identified as the gene psaI for the 4 kDa subunit of photosystem I. Orf587 is an extended version of the gene zfpA previously identified as encoding a conserved putative zinc-finger protein. The product of orf587 shows extensive homology to an unidentified open reading frame cotranscribed with a gene for folate metabolism in Escherichia coli and local homology to a region of the β subunit of rat mitochondrial propionyl-CoA carboxylase. It is suggested that the product of orf587 is an enzyme of C1 metabolism and is unlikely to be a regulatory DNA-binding protein. Orf157 potentially encodes an unidentified basic protein, but the protein sequence is not conserved in other plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bankier AT, Barrell BG (1983) In: Flavell RA (ed) Techniques in nucleic acid biochemistry. Elsevier, Amsterdam, pp B508/1–31

    Google Scholar 

  • Berg JM (1986) Science 232:485–487

    Google Scholar 

  • Bird CR, Koller B, Auffret AD, Huttly AK, Howe CJ, Dyer TA, Gray JC (1985) EMBO J 4:1381–1388

    Google Scholar 

  • Bognar AL, Osborne C, Shane B (1987) J Biol Chem 262:12337–12343

    Google Scholar 

  • Bowman CM, Barker RF, Dyer TA (1988) Curr Genet 14:127–136

    Google Scholar 

  • Fukuzawa H, Kohchi T, Sano T, Shirai H, Umesono K, Inokuchi H, Ozeki H, Ohyama K (1988) J Mol Biol 203:333–351

    Google Scholar 

  • Gray JC, Hird SM, Dyer TA (1990) Plant Mol Biol 15:947–950

    Google Scholar 

  • Haase FC, Henrikson KP, Treble DH, Allen SHG (1982) J Biol Chem 257:11994–11999

    Google Scholar 

  • Haley J, Bogorad L (1989) Proc Natl Acad Sci USA 86:1534–1538

    Google Scholar 

  • Hallick RB (1989) Plant Mol Biol Reporter 7:266–275

    Google Scholar 

  • Haymerle H, Herz J, Bressan GM, Frank R, Stanley KK (1986) Nucleic Acids Res 14:8615–8624

    Google Scholar 

  • Herrmann RG, Westhoff P, Alt J, Tittgen J, Nelson N (1985) In: van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome. Plenum Press, New York, pp 233–256

    Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C, Meng B, Li Y, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) Mol Gen Genet 217:185–194

    Google Scholar 

  • Hird SM, Dyer TA, Gray JC (1986) FEBS Lett 209:181–186

    Google Scholar 

  • Howe CJ, Auffret AD, Doherty A, Bowman CM, Dyer TA, Gray JC (1982) Proc Natl Acad Sci USA 79:6903–6907

    Google Scholar 

  • Howe CJ, Fearnley IM, Walker JE, Gray JC (1985) Plant Mol Biol 4:333–345

    Google Scholar 

  • Ikeuchi M, Inoue Y (1988) FEBS Lett 241:99–104

    Google Scholar 

  • Ikeuchi M, Takio K, Inoue Y (1989a) FEBS Lett 242:263–269

    Google Scholar 

  • Ikeuchi M, Koike H, Inoue Y (1989b) FEBS Lett 251:155–160

    Google Scholar 

  • Ikeuchi M, Hirano A, Hiyama T, Inoue Y (1990) FEBS Lett 263:274–278

    Google Scholar 

  • Kraus JP, Firgaira F, Novotny J, Kalousek F, Williams KR, Williamson C, Ohura T, Rosenberg LE (1986) Proc Natl Acad Sci USA 83:8049–8053

    Google Scholar 

  • Laemmli UK (1970) Nature 227:680–685

    Google Scholar 

  • Lehmbeck J, Rasmussen OF, Bookjans GB, Jepson BR, Stummann BM, Henningsen KW (1986) Plant Mol Biol 7:3–10

    Google Scholar 

  • Maurizi MR, Clark WP, Kim S-H, Gottesman S (1990) J Biol Chem 265:12546–12552

    Google Scholar 

  • Michel H, Hunt DF, Shabanowitz J, Bennett J (1988) J Biol Chem 262:1123–1130

    Google Scholar 

  • Murata N, Miyao M, Hayashida N, Hidaka T, Sugiura M (1988) FEBS Lett 235:283–288

    Google Scholar 

  • Nishizuka Y (1988) Nature 334:661–665

    Google Scholar 

  • Nonet ML, Marvel CC, Tolan DR (1987) J Biol Chem 262:12209–12217

    Google Scholar 

  • Ogihara Y, Terachi T, Sasakuma T (1988) Proc Natl Acad Sci USA 85:8573–8577

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Nature 322:572–574

    Google Scholar 

  • Palmer JD, Thompson WF (1981a) Gene 15:21–26

    Google Scholar 

  • Palmer JD, Thompson WF (1981b) Cell 29:537–550

    Google Scholar 

  • Pearson WR, Lipman DJ (1988) Proc Natl Acad Sci USA 85:2444–2448

    Google Scholar 

  • Purton S, Gray JC (1989) Mol Gen Genet 217:77–84

    Google Scholar 

  • Sakane F, Yamada K, Kanoh H, Yokoyama C, Tanabe T (1990) Nature 344:345–348

    Google Scholar 

  • Sanger F, Coulson AR, Barrell BG, Smith AJH, Roe BA (1980) J Mol Biol 143:161–178

    Google Scholar 

  • Sasaki Y, Nagano Y, Morioka S, Ishikawa H, Matsuno R (1989) Nucleic Acids Res 17:6217–6227

    Google Scholar 

  • Sayre R, Andersson B, Bogorad L (1987) Cell 47:601–608

    Google Scholar 

  • Scheller HV, Okkels JS, Høj PB, Svendsen I, Roepstorff P, Møller BL (1989) J Biol Chem 264:18402–18406

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) EMBO J 5:2043–2047

    Google Scholar 

  • Smith AG, Gray JC (1984) Mol Gen Genet 194:471–476

    Google Scholar 

  • Staden R (1982) Nucleic Acids Res 10:4731–4751

    Google Scholar 

  • Staden R (1984) Nucleic Acids Res 12:521–538

    Google Scholar 

  • Stanley KK, Luzio JP (1984) EMBO J 3:1429–1434

    Google Scholar 

  • Tae G-S, Black MT, Cramer WA, Vallon O, Bogorad L (1988) Biochemistry 27:9075–9080

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Proc Natl Acad Sci USA 76:4350–4354

    Google Scholar 

  • Webber AN, Hird SM, Packman LC, Dyer TA, Gray JC (1989a) Plant Mol Biol 12:141–151

    Google Scholar 

  • Webber AN, Packman L, Chapman DJ, Barber J, Gray JC (1989b) FEBS Lett 242:259–262

    Google Scholar 

  • Willey DL, Gray JC (1990) Plant Mol Biol 15:347–356

    Google Scholar 

  • Willey DL, Huttly AK, Phillips AL, Gray JC (1983) Mol Gen Genet 189:85–89

    Google Scholar 

  • Willey DL, Auffret AD, Gray JC (1984) Cell 36:555–562

    Google Scholar 

  • Woodbury NW, Roberts LL, Palmer JD, Thompson WF (1988) Curr Genet 14:75–89

    Google Scholar 

  • Woodbury NW, Dobres M, Thompson WF (1989) Curr Genet 16:433–445

    Google Scholar 

  • Yen TSB, Webster RE (1981) J Biol Chem 256:11259–11265

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. J. Leaver

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.G., Wilson, R.M., Kaethner, T.M. et al. Pea chloroplast genes encoding a 4kDa polypeptide of photosystem I and a putative enzyme of C1 metabolism. Curr Genet 19, 403–410 (1991). https://doi.org/10.1007/BF00309603

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309603

Key words

Navigation