Skip to main content
Log in

Three-Dimensional analysis of dendritic spines

I. Quantitative observations related to dendritic spine and synaptic morphology in cerebral and cerebellar cortices

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

A total of 212 dendritic spines (108 from the visual and 104 from cerebellar cortices of the mouse) were analyzed in serial sections. Dendritic spines (DS) and synaptic active zones (SAZ) were classified according to their shape, and the following quantitative data were measured: DS stalk and bulb diameters, DS length and volume, number of cisterns of the spine apparatus, DS and SAZ surface areas and their mutual proportions. Quantitative relationships between the spine apparatus and the size of DS and SAZ, between the volume and surface area of DS and between the size of DS and the size of SAZ were studied. Thin, mushroom-shaped and stubby DS with simple (circular or oval), complex (perforated, annulate or horseshoe-shaped) and multifocal SAZ were found on terminal branches of pyramidal cell apical dendrites and club-shaped DS with simple (circular or oval) SAZ on spiny branchlets of Purkinje cells.

Statistically significant differences were found between all values measured on various DS types in the visual cortex. Linear dependencies of the DS surface area on DS volume and of the SAZ surface area on the DS surface area were established. Only a limited area of DS plasma membrane (7–10%) was occupied by SAZ. This finding indicates a possible functional importance of the SAZ/DS (and possibly also of the total SAZ/total postsynaptic membrane) surface ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akert K (1973) Dynamic aspects of synaptic ultrastructure. Brain Res 49:511–518

    Article  Google Scholar 

  • Andres KH (1975) Morphological criteria for the differentiation of synapses in vertebrates. J Neural Transmission Suppl XII:1–37

    Google Scholar 

  • Anker RL, Cragg BG (1974) Estimation of the number of synapses in a volume of nervous tissue from counts in thin sections by electron microscopy. J Neurocytol 3:725–735

    PubMed  Google Scholar 

  • Artjuchina NI (1965) Structural characteristic of synapses of rat motor cortex. (In Russian.) Arch Anat 49:21–28

    Google Scholar 

  • Bachmann L, Sitte P (1959) Dickenbestimmung nach Tolansky an Ultradünnschnitten Mikroskopie 13:289–304

    PubMed  Google Scholar 

  • Berard DR, Burgess JW, Coss RG (1981) Plasticity of dendritic spine formation: A state-dependent stochastic process. Intern J Neuroscience 13:93–98

    Google Scholar 

  • Bray D, Bunge MB (1981) Serial analysis of microtubules in cultured rat sensory axons. J Neurocytol 10:589–605

    PubMed  Google Scholar 

  • Caviness VS Jr (1975) Architectonic map of neocortex of the normal mouse. J Comp Neurol 164:247–264

    PubMed  Google Scholar 

  • Chang H (1952) The cortical neurons with particular reference to the apical dendrites. Cold Spring Harbor Symposium Quant Biol 17:198–202

    Google Scholar 

  • Chen S, Hillman DE (1980) Giant spines and enlarged synapses induced in Purkinje cells by malnutrition. Brain Res 187:487–493

    Article  PubMed  Google Scholar 

  • Cohen RS, Siekevitz P (1978) Form of the postsynaptic density. A serial section study. J Cell Biol 78:36–46

    Article  PubMed  Google Scholar 

  • Conradi S (1969) Ultrastructure and distribution of neuronal and glial elements on the surface of the proximal part of a motoneuron dendrite, as analyzed by serial sections. Acta Physiol Scand Suppl 332:49–64

    PubMed  Google Scholar 

  • Conradi S, Kellerth J-O, Berthold C-H (1979) Electron microscopic studies of serially sectioned cat spinal α-motoneurones. II. A method for the description of architecture and synaptology of the cell body and proximal dendritic segments. J Comp Neurol 184:741–754

    PubMed  Google Scholar 

  • Couteaux R (1961) Principaux critères morphologiques et cytochimiques utisables aujourd'hui pour définir les divers types de synapses. Actual Neurophysiol 3:145–173

    Google Scholar 

  • Diamond J, Gray EG, Yasargil GM (1970) The function of the dendritic spine: an hypothesis. In: P Andersen, JKS Jansen (eds) Excitatory synaptic mechanisms. Universitetsforlaget, Oslo, Bergen, Tromsö, pp 213–222

    Google Scholar 

  • Feldman ML (1975) Serial thin sections of pyramidal apical dendrites in the cerebral cortex: Spine topography and related observations. Anat Rec 181:354–355

    Google Scholar 

  • Feldman ML, Dowd C (1975) Loss of dendritic spines in aging cerebral cortex. Anat Embryol 148:279–301

    PubMed  Google Scholar 

  • Feldman ML, Peters A (1979) A technique for estimating total spine numbers on Golgi-impregnated dendrites. J Comp Neurol 188:527–542

    PubMed  Google Scholar 

  • Fifková E, Harreveld A van (1977) Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area. J Neurocytol 6:211–230

    PubMed  Google Scholar 

  • Fifková E, Anderson CL, Young SJ, Harreveld A van (1982) Effect of anisomycin on stimulation-induced changes in dendritic spines of the dentate granule cells. J Neurocytol 11:183–210

    PubMed  Google Scholar 

  • Freire M (1978) Effects of dark rearing on dendritic spines in layer IV of the mouse visual cortex. A quantitative electron microscopical study. J Anat (Lond) 126:193–201

    Google Scholar 

  • Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat (Lond) 93:420–433

    Google Scholar 

  • Gray EG (1982) Rehabilitating the dendritic spine. Trends Neuro Sci 5:5

    Google Scholar 

  • Greenough WT, West RW, De Voogd TJ (1978) Subsynaptic plate perforations: changes with age and experience in the rat. Science 202:1096–1098

    PubMed  Google Scholar 

  • Gulley RL, Reese TS (1981) Cytoskeletal organization at the postsynaptic complex. J Cell Biol 91:298–302

    Article  PubMed  Google Scholar 

  • Gunning BES, Hardham AR (1977) Estimation of the average section thickness in ribbons of ultrathin sections. J Microscopy 109:337–340

    Google Scholar 

  • Hersch SM, White EL (1981) Quantification of synapses formed with apical dendrites of Golgi-impregnated pyramidal cells: variability in thalamocortical inputs, but consistency in the ratios of asymmetrical to symmetrical synapses. Neuroscience 6:1043–1051

    Article  PubMed  Google Scholar 

  • Hillman DE, Chen S (1981a) Vulnerability of cerebellar development in malnutrition. II. Intrinsic determination of total synaptic area on Purkinje cell spines. Neuroscience 6:1263–1275

    Article  PubMed  Google Scholar 

  • Hillman DE, Chen S (1981 b) Plasticity of synaptic size with constancy of total synaptic contact area on Purkinje cells in the cerebellum. In: Eleventh international congress of anatomy: Glial and neuronal cell biology, 229–245. Alan R Liss Inc, 150 Fifth Avenue, New York

    Google Scholar 

  • Ingham CA, Güldner F-H (1981) Identification and morphometric evaluation of the synapses of optic nerve afferent in the optic tectum of the Axolotl (Ambystoma mexicanum). Cell Tissue Res 214:593–611

    Article  PubMed  Google Scholar 

  • Jones EG, Powell TPS (1970) Electron microscopy of the somatic sensory cortex of the cat. I. Cell types and synaptic organization. Phil Trans Roy Soc London B 257:1–11

    PubMed  Google Scholar 

  • Jones DG (1981a) Quantitative analysis of synaptic morphology. Trends Neuro Sci 4:15–17

    Article  Google Scholar 

  • Jones DG (1981b) Ultrastructural approaches to the organization of central synapses. Am Sci 69:200–210

    PubMed  Google Scholar 

  • Jones DG, Devon RM (1978) An ultrastructural study into the effects of pentobarbitone on synaptic organization. Brain Res 147:47–63

    Article  PubMed  Google Scholar 

  • Karlsson U (1966) Three-dimensional studies of neurons in the lateral geniculate nucleus of the rat. II. Environment of perikarya and proximal parts of their branches. J Ultrastr Res 16:482–504

    Google Scholar 

  • Kirsche W (1977) Historischer Überblick zur Entdeckung der Ultrastruktur der interneuronalen Synapsen und Bemerkungen zum gegenwärtigen Stand. Ein Beitrag aus Anlaß der Wiederkehr des 125. Geburtstages von Ramon y Cajal. Z Mikrosk-Anat Forsch Leipzig 91:595–686

    Google Scholar 

  • Kojima T, Saito K, Kakimi S (1972) Electron microscopic quantitative observations on the neuron and the terminal boutons contacted with it in the ventrolateral part of the anterior horn (C6–7) of the adult cat. Okajimas Fol Anat Jap 49:175–226

    Google Scholar 

  • Kunz G, Kirsche W, Wenzel J, Winkelmann E, Neumann H (1972) Quantitative Untersuchungen über die Dendritenspines and Pyramidenneuronen des sensorischen Cortex der Ratte. Z Mikrosk-Anat Forsch Leipzig 85:397–416

    Google Scholar 

  • Llinás R, Hillman DE (1969) Physiological and morphological organization of the cerebellar circuits in various vertebrates. In: R Llinás (ed) Neurobiology of cerebellar evolution and development, 43–73. Chicago: AMA-ERF Institute for Biochemical Research

    Google Scholar 

  • Marin-Padilla M (1967) Number and distribution of the apical dendritic spines of the layer V pyramidal cells in man. J Comp Neurol 131:475–490

    PubMed  Google Scholar 

  • Marin-Padilla M (1974) Structural organization of the cerebral cortex (motor area) in human chromosomal aberrations. A Golgi study. I. D1(13–15) trisomy, Patan syndrome. Brain Res 60:375–391

    Article  Google Scholar 

  • Marin-Padilla M (1976) Pyramidal cell abnormalities in the motor cortex of a child with Down's syndrome. A Golgi study. J Comp Neurol 167:63–82

    PubMed  Google Scholar 

  • Mayhew TM (1979) Stereological approach to the study of synapse morphometry with particular regard to estimating number in a volume and on a surface. J Neurocytol 8:121–138

    PubMed  Google Scholar 

  • Mugnaini E, Atluri RL, Houk JC (1974) Fine structure of granular layer in turtle cerebellum with emphasis on large glomeruli. J Neurophysiol 37:1–29

    PubMed  Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar cortex, cytology, and organization. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Parnavelas JG, Sullivan K, Lieberman AR, Webster KE (1977) Neurons and their synaptic organization in the visual cortex of the rat. Cell Tissue Res 183:499–517

    Article  PubMed  Google Scholar 

  • Peachey LD (1958) Thin sections. I. A study of section thickness and physical distortion produced during microtomy. J Biophys Biochem Cytol 4:233–242

    PubMed  Google Scholar 

  • Peters A, Kaiserman-Abramof IR (1969) The small pyramidal neuron of the cerebral cortex. The synapses upon dendritic spines. Z Zellforsch Mikrosk Anat 100:487–506

    PubMed  Google Scholar 

  • Peters A, Kaiserman-Abramof IR (1970) The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat 127:321–356

    PubMed  Google Scholar 

  • Peters A, Palay SL, Webster HdeF (1976) The fine structure of the nervous system: The neurons and supporting cells. WB Saunders Company, Philadelphia, London, Toronto

    Google Scholar 

  • Purpura DP (1974) Dendritic spine “dysgenesis” and mental retardation. Science 186:1126–1128

    PubMed  Google Scholar 

  • Rakic P (1976) Synaptic specificity in the cerebellar cortex: study of anomalous circuits induced by single gene mutations in mice. Cold Spring Harbor Symp Quant Biol 40:333–346

    PubMed  Google Scholar 

  • Saito K (1979) Morphometrical synaptology of Clarke cells and of distal dendrites in the nucleus dorsalis: An electron microscopic study in the cat. Brain Res 178:233–249

    Article  PubMed  Google Scholar 

  • Sakai T (1980) Relation between thickness and interference colors of biological ultrathin sections. J Electron Microsc 29:369–375

    Google Scholar 

  • Scheibel ME, Scheibel AB (1968) On the nature of dendritic spines — report of a workshop. Commun Behav Biol Part A 1:231–265

    Google Scholar 

  • Schüz A (1978) Some facts and hypotheses concerning dendritic spines and learning. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 129–135

    Google Scholar 

  • Sotelo C (1975) Anatomical, physiological and biochemical studies of the cerebellum from mutant mice: II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res 94:19–44

    Article  PubMed  Google Scholar 

  • Špaček J (1979) Synaptic active zone to dendritic spine surface ratio. Communications of Czechoslovak Society for Histo- and Cytochemistry ČSAV 7:77

    Google Scholar 

  • Špaček J, Lieberman AR (1974a) Ultrastructure and three-dimensional organization of synaptic glomeruli in rat somatosensory thalamus. J Anat (Lond) 117:487–516

    Google Scholar 

  • Špaček J, Lieberman AR (1974b) Three-dimensional reconstruction in electron microscopy of central nervous system. Sborník Věd Prací Hradec Králové 17:203–222

    Google Scholar 

  • Streit P, Akert K, Sandri C, Livingstone RB, Moor H (1972) Dynamic ultrastructure of presynaptic membranes at nerve terminals in the spinal cord of rats. Anaesthetized and unanaesthetized preparations compared. Brain Res 48:11–26

    Article  PubMed  Google Scholar 

  • Suetsugu M, Mehraein P (1980) Spine distribution along the apical dendrites of the pyramidal neurons in Down's syndrome. Acta Neuropathol (Berl) 50:207–210

    Google Scholar 

  • Szentágothai J (1970) The morphological identification of the active synaptic region: aspects of general arrangement, of geometry and topology. In: Andersen P, Jansen JKS (eds) Excitatory synaptic mechanisms, Universitetsforlaget, Oslo

    Google Scholar 

  • Tarrant SB, Routenberg A (1977) The synaptic spinule in the dendritic spine: electron microscopic study of the hippocampal dentate gyrus. Tissue Cell 9:461–473

    PubMed  Google Scholar 

  • Valverde F (1967) Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp Brain Res 3:337–352

    Article  PubMed  Google Scholar 

  • Valverde F (1968) Structural changes in the area striata of the mouse after enucleation. Exp Brain Res 5:274–292

    Article  PubMed  Google Scholar 

  • Valverde F, Esteban ME (1968) Peristriate cortex of mouse: location and the effects of enucleation on the number of dendritic spines. Brain Res 9:145–148

    Article  PubMed  Google Scholar 

  • Van der Want J, Vrensen G, Nunez Cardozo J, Voogd J (1981) On the specificity of synaptic size. J Anat (Lond) 133:134–136

    Google Scholar 

  • Vaughan DW, Peters A (1973) A three-dimensional study of layer I of the rat parietal cortex. J Comp Neurol 149:355–370

    PubMed  Google Scholar 

  • Voss Ch, Schiller A, Taugner R (1980) Morphology and distribution of the synapses to the spinal motoneuron of the frog. Cell Tissue Res 213:253–271

    Article  PubMed  Google Scholar 

  • Vrensen G, De Groot D (1973) Quantitative stereology of synapses: a critical investigation. Brain Res 58:25–35

    Article  PubMed  Google Scholar 

  • Vrensen G, Nunez Cardozo J (1981) Changes in size and shape of synaptic connections after visual training: An ultrastructural approach of synaptic plasticity. Brain Res 218:79–97

    Article  PubMed  Google Scholar 

  • Vrensen G, Nunez Cardozo J, Müller L, Van der Want J (1981) The presynaptic grid: a new approach. Brain Res 184:23–40

    Article  Google Scholar 

  • Westman J (1971) Quantitative estimation of the proportion of perikaryal surface area covered with boutons — a possibility to distinguish different nerve cell populations. Brain Res 32:203–207

    Article  PubMed  Google Scholar 

  • White EL, Rock MP (1980) Three-dimensional aspects and synaptic relationships of a Golgi-impregnated spiny stellate cell reconstructed from serial thin sections. J Neurocytol 9:615–636

    PubMed  Google Scholar 

  • Yang GCH, Shea SM (1975) The precise measurement of the thickness of ultrathin sections by a “re-sectioned section” technique. J Microscopy 103:385–392

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Špaček, J., Hartmann, M. Three-Dimensional analysis of dendritic spines. Anat Embryol 167, 289–310 (1983). https://doi.org/10.1007/BF00298517

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00298517

Key words

Navigation