Skip to main content
Log in

Depolarization exposes the voltage sensor of the sodium channels to the extracellular region

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Two domains of Na channels were mapped with site-specific antibodies raised in rabbit against synthetic peptides corresponding to a part of the voltage sensor of internal repeat 1C +1 (amino acids 210–223) and to a region designated dipole (amino acids 1690–1699) of eel electroplax sodium channels. The antibodies bind to their respective domains in both purified and membrane-bound channels and immunoprecipitate the channels from eel electroplax and rat brain synaptosomes.

Anti-C +1 depresses the action potential of rat sciatic nerve in a concentration-dependent way. It binds to the external side of rat brain synaptosomal vesicle, and its binding is potentiated by depolarization. Anti-dipole binds to the inner side of the vesicle, and the binding is inhibited by depolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnew, W.S., Rosenberg, R.L., Tomiko, S.A. 1986. Reconstitution of the sodium channels from Electrophorus electricus. In: Ion Channel Reconstitution. C. Miller, editor. pp. 307–336. Plenum, New York

    Google Scholar 

  • Aldrich, R.W., Stevens, C.F. 1987. Voltage dependent gating of sodium channels from mammalian neuroblastoma cells. J. Neurosci. 7:418–431

    Google Scholar 

  • Armstrong, C.M. 1981. Sodium currents and gating currents. Physiol. Rev. 61:644–683

    Google Scholar 

  • Barchi, R.L. 1988. Probing the molecular structure of the voltage dependent sodium channel. Annu. Rev. Neurosci. 11:455–495

    Google Scholar 

  • Barzilai, A., Rahamimoff, H. 1987. Stoichiometry of sodium-calcium exchanges in nerve terminals. Biochemistiy 26:6113–6118

    Google Scholar 

  • Bezanilla, F. 1985. Gating of sodium and potassium channels. J. Membrane Biol. 88:97–111

    Google Scholar 

  • Bruns, R.F., Lawson-Wendung, K., Pugsley, T.A. 1983. A rapid filtration assay for soluble receptors using polyethylen amine-treated filters. Anal. Biochem. 132:74–81

    Google Scholar 

  • Caldwell, J.H., Schaller, K.L. 1989. Isolation of novel Na channel genes by PCR gene amplification. Soc. Neurosci. 15:197a

    Google Scholar 

  • Catterall, W.A. 1988. Structure and function of voltage sensitiveion channels. Science 242:50–61

    Google Scholar 

  • Catterall, W.A. 1990. Molecular properties of voltage sensitive Na+ and Ca++ channels. Biophys. J. 57:195a

    Google Scholar 

  • Costa, M.R., Catterall, W.A. 1984. Cyclic AMP-dependent phosphorylation of the alpha subunit of the sodium channel in synaptic nerve ending particles. J. Biol. Chem. 259:8210–8218

    Google Scholar 

  • Duch, D.S., Levinson, S.R. 1987. Neurotoxin modulated uptake of sodium by highly purified preparation of the electroplax tetrodotoxin binding glycoprotein reconstituted into lipid vesicles. J. Membrane Biol. 98:43–55

    Google Scholar 

  • Ganetzki, B., Loughney, K. 1989. Alternative splicing generates distinct sodium channel subtypes in Drosophila. Soc. Neurosci. 15:196a

    Google Scholar 

  • Gasko, D.D., Knowles, A.F., Shertzer, H.C., Suolinna, E.H., Racker, E. 1976. The use of ion exchange resins for studying ion channel transport in biological systems. Anal. Biochem. 72:57–65

    Google Scholar 

  • Gordon, R.D., Fieles, W.E., Schotland, D.L., Hogue-Angeletti, R., Barchi, R.L. 1987. Topographical localization of the C-terminal of the voltage-dependent sodium channel from Electrophorus electricus using antibodies raised against a synthetic peptide. Proc. Natl. Acad. Sci. USA 84:308–312

    Google Scholar 

  • Gordon, R.D., Li, Y., Fieles, W.E., Schotland, D.L., Barchi, R.L. 1988. Topological localization of a segment of the eel voltage dependent sodium channel primary sequence (AA927–938) that discriminates models of tertiary structure. J. Neurosci. 8:3742–3749

    Google Scholar 

  • Greenblatt, R.E., Blatt, Y., Montal, M. 1985. The structure of the voltage sensitive sodium channels. Inferences derived from computer-aided analysis of the Electrophorus electricus channel primary structure. FEBS Lett. 193:125–134

    Google Scholar 

  • Guy, H.R. 1987. How sodium channels work—a molecular model. Curr. Topics Membr. Transp. 33:289–308

    Google Scholar 

  • Guy, H.R., Conti, F. 1990. Pursuing the structure and function of voltage-gated channels. Trends Neurosci. 13:201–206

    Google Scholar 

  • Guy, H.R., Seetharamulu, P. 1986. Molecular model of the action potential sodium channel. P roc. Natl. Acad. Sci. USA 83:508–512

    Google Scholar 

  • Hille, B. 1984. Ionic Channels of Excitable Membrane. pp. 426. Sinauer, Sunderland (MA)

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 116:500–544

    Google Scholar 

  • Kallen, R.G., Sheng, Z., Yank, J., Chen, L.Q., Fishbeck, K., Barchi, R.L. 1990. Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron 4:233–242

    Google Scholar 

  • Kanner, B.I. 1980. Modulation of neurotransmitter transport by the activity of the action potential sodium ion in membrane vesicles from rat. Biochemistry 19:692–697

    Google Scholar 

  • Kayano, T., Noda, M., Flockerzi, V., Takahashi, A., Numa, S. 1988. Primary structure of the rat brain sodium channel III deduced from the cDNA sequence. FEBS Lett. 228:187–194

    Google Scholar 

  • Kosower, E.M. 1985. A structural and dynamic molecular model for the sodium channel of Electrophorus electricus. FEBS Lett. 182:235–242

    Google Scholar 

  • Kosower, E.M. 1991. Structure and dynamic molecular models for sodium channels. In: The Molecular Basis of Learning and Memory. Princeton University Press (in press)

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Levinson, S.R., Duch, S.D., Urban, B.W., Recio-Pinto, E. 1986. The sodium channels from Electrophorus electricus. Ann. NY Acad. Sci. 479:162–178

    Google Scholar 

  • Lombet, A., Lazdunski, M. 1984. Characterization, solubilization, affinity labeling and purification of the cardiac sodium channel using Tityus toxin gamma. Eur. J. Biochem. 141:651–660

    Google Scholar 

  • Lowry, O.H., Rosenbrough, N.J., Farr, R.J., Randall, J. 1951. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193:265–275

    CAS  PubMed  Google Scholar 

  • Meiri, H., Sammar, M., Schwartz, A. 1989. Production and use of synthetic peptide antibodies to map a region associated with sodium channel inactivation. Immunological techniques: Anti-idiotype antibodies and molecular mimicry. Methods Enzymol. 178:714–739

    Google Scholar 

  • Meiri, H., Spira, G., Sammar, M., Namir, M., Schwartz, A., Komoriya, A., Kosower, E.M., Palti, Y. 1987. Mapping a region associated with Na channel inactivation using antibodies to a synthetic peptide corresponding to a part of the channel. Proc. Natl. Acad. Sci. USA 84:5058–5062

    Google Scholar 

  • Merrifield, R.B. 1985. Solid phase synthesis. Angew. Chem. Int. Ed. Engl. 24:799–810

    Google Scholar 

  • Miller, C.M. 1986. How ion channel proteins work. In: Neuro-modulation: The Biochemical Control of Neuronal Excitability. L.K. Kaczmarek and I.B. Levitan, editor. Chap. 3, pp. 39–55. Oxford University Press, New York

    Google Scholar 

  • Noda, M., Idada, T., Suzuki, H., Takeshima, H., Takahashi, T., Kuno, M., Numa, S. 1986a. Expression of functional sodium channels from cloned cDNA. Nature 322:826–828

    Google Scholar 

  • Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H., Numa, S. 1986b. Existence of distinct sodium channel messenger RNA in rat brain. Nature 320:188–192

    Google Scholar 

  • Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Miniamino, N., Kangawa, K., Matsuo, H., Raftery, M.A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., Numa, S. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    Google Scholar 

  • Pusch, M. 1990. Block of different cloned Na-channels by internal Mg++ and external Ca++. Biophys. J. 57:105a

    Google Scholar 

  • Reeves, S., Sutko, J.L. 1979. Na-Ca ion exchange in cardiac membrane vesicles. Biochemistry 76:590–594

    Google Scholar 

  • Rogart, R.B., Cribbs, L.L., Muglia, L.K., Kephalp, D.D., Kaiser, M.W. 1989. Molecular cloning of a putative TTX-resistant rat heart Na channel isoform. Proc. Natl. Acad. Sci. USA 86:8170–8174

    Google Scholar 

  • Rossie, S., Gordon, D., Catterall, W.A. 1987. Identification of an intracellular domain of the sodium channel having multiple cAMP-dependent phosphorylation sites. J. Biol. Chem. 262:17530–17539

    Google Scholar 

  • Salkoff, L., Butler, A., Wei, A., Scavarda, N., Baker, K., Pauron, D., Smith, C. 1987. Trends Neurosci. 10:522–527

    Google Scholar 

  • Salkoff, L., Butler, A., Wei, A., Scavarda, N., Giffen, K., Ilfune, C., Goodman, R., Mandel, G. 1987. Genomic organization and deduced amino acids sequence of a putative sodium channel gene in Drosophila. Science 237:744–748

    Google Scholar 

  • Schwartz, A., Palti, Y., Meiri, H. 1990. Structural and developmental differences between 3 types of Na channels in dorsal root ganglion of newborn rats. J. Membrane Biol. 116:117–128

    Google Scholar 

  • Stuhmer, W. 1990. Site directed mutagenesis on voltage gated channels. Biophys. J. 57:386a

    Google Scholar 

  • Stuhmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H., Numa, S. 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603

    Google Scholar 

  • Suzuki, H., Beckh, S., Kubo, H., Yahagi, N., Ishida, H., Kayano, T., Noda, M., Numa, S. 1988. Functional expression of cloned cDNA encoding sodium channel III. FEBS Lett. 228:195–200

    Google Scholar 

  • Tosteson, M.T., Auld, D.S., Tosteson, D.C. 1989. Voltage gated channels formed in lipid bilayers by a positively charged segment of the Na-channel polypeptide. Proc. Natl. Acad. Sci. USA 86:707–710

    Google Scholar 

  • Trimmer, S., Jr., Cooperman, S.S., Tomiko, S.A., Zhou, J., Crean, S.M., Boyk, M.B., Galle, R.G., Sheng, Z., Barchi, R.L., Sigworth, F.J., Goodman, R.H., Agnew, W.S., Mandel, G. 1989. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3:33–49

    Google Scholar 

  • Vassilev, P.M., Scheur, T., Catterall, W.A. 1988. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241:1658–1660

    Google Scholar 

  • Wray, W., Boulikas, T., Wray, V.P., Hancock, R. 1981. Silver staining of proteins in polyacrylamid gels. Anal. Biochem. 118:197–203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are most grateful to Dr. M.T. Tosteson (Harvard Medical School) for providing us with samples of the S4IV peptides. We wish to express our gratitude to Drs. D. Gordon (Hebrew University) and A. Safran (The Weizmann Institute) for helping in the immunoprecipitation procedure, to Drs. H. Rahamimoff (Hebrew University) and A. Barzilai (Columbia University) for advising us with the vesicle experiments, to Drs. D. Kassel and M. Gavish (Technion) for many fruitful discussions, and to Dr. Y. Palti (Technion) for discussions of electric field and suggesting the dipole peptide. This work was supported by a basic research fund (BRF) of The Israel Academy of Sciences #430.87 (H.M. and G.S.), a BSF Grant #84-00367 (H.M.) and The Henry Gutwirt Fund for the Promotion of Research-Technion VPR Fund #184-0093 (H.M.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sammar, M., Spira, G. & Meiri, H. Depolarization exposes the voltage sensor of the sodium channels to the extracellular region. J. Membarin Biol. 125, 1–11 (1992). https://doi.org/10.1007/BF00235793

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235793

Key Words

Navigation