Skip to main content
Log in

Peracarid crustacean assemblages of the Kolbeinsey Ridge, north of Iceland

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

On the Kolbeinsey Ridge, north of Iceland, 92 species of peracarid crustaceans were sampled using the epibenthic sledge. For an analysis of the multispecies distribution pattern across the ridge, a total of 46 species have been considered, which occurred at least at two stations and with at least 5% relative abundance at any one station. The analysis revealed four assemblages: a deep species assemblage, an eastern slope assemblage, an ubiquitous species assemblage and a western slope assemblage. The western slope assemblage consists mainly of Amphipoda, which were most abundant and diverse on the western slope. The ubiquitous and eastern slope assemblages, however, are dominated by Isopoda, which also comprised most species and individuals on the eastern slope. Cumaceans were the most representative species of the deep species assemblage. These differences in species composition and abundance can probably be attributed to food supply and sediment composition, rather than to salinity or bottom water temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altenbach AV, Sarnthein M (1989) Productivity records in benthic Foraminifera. In: Berger WH, Smetacek VS and Wefer G (eds), Productivity of the Oceans: Present and Past, John Wiley and Sons, New York, 255–279

    Google Scholar 

  • Barnard JL, Karaman GS (1991) The families and genera of marine gammaridean Amphipoda (except marine gammaroids) Part 1 and 2. Rec Aust Mus Suppl 13 (1/2):1–866

    Google Scholar 

  • Barnes, RD (1987) Invertebrate Zoology. Saunders College Publications (fifth edition), Philadelphia, New York, 1–893

    Google Scholar 

  • Birgisdottir L (1991) Die paläo-ozeanographische Entwicklung der Islandsee in den letzten 550000 Jahren. Ber Sonderforschungsbereich 313, 34:1–112

    Google Scholar 

  • Brandt A (1993) Composition, abundance, and diversity of peracarid crustaceans from the Kolbeinsey Ridge, north of Iceland. Polar Biol (in press)

  • Brattegard T, Fosså JH (1991) Replicability of an epibenthic sampler J mar biol Ass UK 71:153–166

    Google Scholar 

  • Bray JR, Curtis, JT (1957) An ordination of the upland forest of Southern Wisconsin. Ecol Monogr 27:225–349

    Google Scholar 

  • Brusca RC, Brusca GL (1990) Invertebrates. Sinauer, Inc. Publishers, Sunderland, Massachusetts, 1–922

    Google Scholar 

  • Buhl-Jensen L (1986) The benthic amphipod fauna of the WestNorwegian continental shelf compared with the fauna of five adjacent fjords. Sarsia 71:193–208

    Google Scholar 

  • Carey AG (1991) Ecology of the North American Arctic continental shelf benthos: a review. Continent Shelf Res 11 (8–10):865–883

    Google Scholar 

  • Coleman ChO (1989a) On the nutrition of two Antarctic Acanthonotozomatidae (Crustacea: Amphipoda). Polar Biol 9:287–294

    Google Scholar 

  • Coleman ChO (1989b) Gnathiphimedia mandibularis KH Barnard, 1930, an Antarctic amphipod (Acanthonotozomatidae, Crustacea) feeding on Bryozoa. Antarctic Science (short note) 1 (4):343–344

    Google Scholar 

  • Coleman, ChO (1990a) Bathypanoploea schellenbergi Holman & Watling, 1983, an Antarctic amphipod (Crustacea) feeding on Holothuroidea Ophelia 31 (3):197–205

    Google Scholar 

  • Coleman, ChO (1990b) Anatomy of the alimentary canal of Parandania boecki (Stebbing, 1888) (Crustacea, Amphipoda, Stegocephalidae) from the Antarctic Ocean. J. Nat Hist 24:1573–1585

    Google Scholar 

  • Coleman ChO (1991) Comparative fore-gut morphology of Antarctic Amphipoda (Crustacea) adapted to different food sources. Hydrobiol 223:1–9

    Google Scholar 

  • Dayton PK, Hessler RR (1972) Role of biological disturbance in maintaining diversity in the deep sea. Deep-Sea Res 19:199–208

    Google Scholar 

  • DeBroyer C, Klages M (1990) Studies on amphipod biology. In: Arntz W, Ernst W, Hempel I (eds). The expedition Antarktis VII/4 (Epos leg 3) VII/5 of RV “Polarstern” in 1989. Ber Polarforsch 68:113–115

  • Field JG, Clarke K, Warwick RM (1982) A practical strategy for analysing multispecies distribution patterns. Mar Ecol Progr Ser 8:37–52

    Google Scholar 

  • Graf G (1989) Benthic-pelagic coupling in a deep-sea benthic community. Nature (London) 341:437–439

    Google Scholar 

  • Graf G (1992) Benthic-pelagic coupling: A benthic view. Oceanogr Mar Biol Annu Rev 30:149–190

    Google Scholar 

  • Graf G, Linke P (1992) Adenosine nucleotides as indicator of deepsea benthic metabolism. In: deep-sea food chains and global carbon cycle, ed by GT Rowe, NATO ASI Series, Kluwer Acad Publ Dordrecht 237–243

    Google Scholar 

  • Grassle JF, Maciolek NJ (1992) Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am Nat 139:313–341

    Google Scholar 

  • Grassle JF, Sanders HL (1973) Life histories and the role of disturbance. Deep-Sea Res 20:643–659

    Google Scholar 

  • Grebmeier JM, McRoy, CP, Feder HM (1988) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. I. Food supply source and benthic biomass. Mar Ecol Progr Ser 48:57–67

    Google Scholar 

  • Hebbeln D, Wefer G (1991) Effects of ice coverage and ice-rafted material on sedimentation in the Farm Strait. Nature 350 (6317):409–411

    Google Scholar 

  • Hempel G (1985) On the biology of polar seas, particularly the Southern Ocean. In: Gray JS, Christiansen ME (eds) Marine Biology of Polar Regions and the Effects of Stress on Marine Organisms. John Wiley & Son, Chichester pp 3–34

    Google Scholar 

  • Henrich R, Kassens H, Vogelsang E, Thiede J (1989) Sedimentary facies of glacial/interglacial cycles in the Norwegian Sea during the last 350 ky′. Mar Geol 86:283–319

    Google Scholar 

  • Hessler RR, Sanders HL (1967) Faunal diversity in the deep sea. Deep-Sea Res 14:65–78

    Google Scholar 

  • Jumars PA (1976) Deep-sea species diversity: does it have a characteristic scale? J Mar Res 34:217–246

    Google Scholar 

  • Jumars PA, Gallagher, ED (1982) Deep-sea community structure: three plays on the benthic proscenium. In: WG Ernst, Morin JG (eds), The environment of the deep sea. Prentice Hall, New Jersey, pp 218–255

    Google Scholar 

  • Kruskal, JB, Wish, M (1983) Multidimensional scaling -Sage Publications, Beverly Hills, California

    Google Scholar 

  • Lackschewitz KS (1991) Sedimentationsprozesse am aktiven mittelozeanischen Kolbeinsey Rücken (Nördlich von Island). Geomar Rep 1–133

  • Lackschewitz KS, Wallrabe-Adams HJ (1991) Composition and origin of sediments on the mid-oceanic Kolbeinsey Ridge, north of Iceland. Mar Geol 101:71–82

    Google Scholar 

  • Lackschewitz KS, Oehmig R, Wallrabe-Adams HJ (1990) Der aktive mittelozeanische Rücken als Sedimentationsraum — Zusammen-setzung und Dynamik der Sedimente am Kolbeinsey-Rücken (N'Island). Zbl Geol Paläont I(11):1727–1738

    Google Scholar 

  • Lampitt RS, Billett DSM, Rice AL (1986) Biomass of the invertebrate megabenthos from 500 to 4100 m in the northeast Atlantic Ocean. Mar Biol 93:69–81

    Google Scholar 

  • Locker, S, Bohlen T, Brunssen, B, Jung, S. Kohly, A, Struck, U (1993) Analysis of sediment sections and preliminary palaeoceanographic results. Norwegian, Greenland, and Iceland Seas. Meteor Berichte (in press)

  • Machoczek D (1989) Untersuchungen historischer hydrographischer Daten des Europäischen Nordmeeres im Hinblick auf moderne Vorstellungen zur Wassermassenbildung und Zirkulation. DHI, Wiss Tech Ber, pp 1–77

  • Mauchline J (1980) The biology of mysids and euphausiids (Part Two: The biology of Euphausiids) Adv in Mar Biol 18:1–681

    Google Scholar 

  • McCloskey LR (1970) The dynamics of the community associated with a marine scleractinian coral. Int Rev Ges Hydrobiol 55:13–81

    Google Scholar 

  • Moore PG, Rainbow PS (1992) Aspects of the biology of iron, copper and other metals in relation to feeding in Andaniexis abyssi, with notes on Andaniopsis nordlandica and Stegocephalus inflatus (Amphipoda, Stegocephalidae), from Norwegian waters. Sarsia 76:215–225

    Google Scholar 

  • Oehmig R, Wallrabe-Adams HJ (1993) Hydrodynamic properties and grain-size characteristics of volcaniclastic deposits on the Mid-Atlantic Ridge north of Iceland (Kolbeinsey Ridge). J Sed Petrol 63(1):140–151

    Google Scholar 

  • Paetsch H, Botz R, Scholten JC, Stoffers P (1992) Accumulation rates of surface sediments in the Norwegian-Greenland Sea. Mar Geol 104:19–30

    Google Scholar 

  • Piepenburg D (1988) Zur Zusammensetzung der Bodenfauna in der westlichen Fram-Straße. Ber Polarforsch 52:1–118

    Google Scholar 

  • Piepenburg D, Piatkowski U (1992) A program for computer-aided analyses of ecological field data. CABIOS 8 (6):587–590

    Google Scholar 

  • Romesburg, CH (1984) Cluster analysis for researchers. Wadsworth, Belmont

    Google Scholar 

  • Rothlishberg PC, Pearcy WG (1977) An epibenthic sampler used to study the ontogeny of vertical migration of Pandalus jordani (Decapoda, Caridea). Fish Bull 74:994–997

    Google Scholar 

  • Sanders HL, Hessler RR, Hampson GR (1965) An introduction to the study of deep-sea benthic faunal assemblages along the Gay Head-Bermuda Transect. Deep-Sea Res 12:845–867

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Smith CR, Hamilton SC (1988) Epibenthic megafauna of the bathyal basin off southern California: patterns of abundance, biomass, and dispersion. Deep-Sea Res 30 (9A):907–928

    MathSciNet  Google Scholar 

  • Suess E (1980) Paniculate organic carbon flux in the oceans-surface productivity and oxygen utilization Nature 288:260–265

    Google Scholar 

  • Svavarsson, J (1988) Bathyal and abyssal Asellota (Crustacea, Isopoda) from the Norwegian, Greenland, and North Polar Seas. Sarsia 73:83–106

    Google Scholar 

  • Svavarsson J, Brattegard T, Strömberg J-O (1990) Distribution and diversity patterns of asellote isopods (Crustacea) in the deep Norwegian and Greenland Seas. Prog Oceanog Vol 24:297–310

    Google Scholar 

  • Svavarsson J, Gudmundsson G, Brattegard T (1993) Feeding by asellote isopods (Crustacea) on foraminifers (Protozoa) in the deep sea. Deep-Sea Res (in press)

  • Thiede J, Diesen GW, Knudsen BE, Snare T (1986) Patterns of cenozoic sedimentation in the Norwegian-Greenland Sea. Mar Geol 69:323–352

    Google Scholar 

  • Wainrigth SC (1990) Sediment-to-water fluxes of particulate material and microbes by resuspension and their contribution to the planktonic food web. Mar Ecol Progr Ser 62:271–281

    Google Scholar 

  • Watling L (1979) Marine Flora and Fauna of the Northeastern United States Crustacea: Cumacea. NOAA Technical Report NMFS Circular 423:1–22

    Google Scholar 

  • Wilkinson, L (1987) Systat: The system for statistics. Systat Inc., Evanston.

    Google Scholar 

  • Wilson GDF, Hessler RR (1987): Speciation in the deep sea. Ann Rev Ecol Syst 18:185–207

    Article  Google Scholar 

  • Wilson GDF, Thistle D (1985) Amuletta, a new genus for Ilyarachna abyssorum Richardson, 1911 (Isopoda: Asellota: Eurycopidae). J Crust Biol 5:350–360

    Google Scholar 

  • Wolff, T (1962) The systematics and biology of bathyal and abyssal Asellota. Galathea Report 6:1–320

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, A., Piepenburg, D. Peracarid crustacean assemblages of the Kolbeinsey Ridge, north of Iceland. Polar Biol 14, 97–105 (1994). https://doi.org/10.1007/BF00234971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234971

Keywords

Navigation