Skip to main content
Log in

Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation- and anion-selective channels in planar lipid bilayers

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Previous studies in our laboratory have shown that CryIC, a lepidopteran-specific toxin from Bacillus thuringiensis, triggers calcium and chloride channel activity in SF-9 cells (Spodoptera frugiperda, fall armyworm). Chloride currents were also observed in SF-9 membrane patches upon addition of CryIC toxin to the cytoplasmic side of the membrane. In the present study the ability of activated CryIC toxin to form channels was investigated in a receptor-free, artificial phospholipid membrane system. We demonstrate that this toxin can partition in planar lipid bilayers and form ion-selective channels with a large range of conductances. These channels display complex activity patterns, often possess subconducting states and are selective to either anions or cations. These properties appeared to be pH dependent. At pH 9.5, cation-selective channels of 100 to 200 pS were most frequently observed. Among the channels recorded at pH 6.0, a 25–35 pS anion-selective channel was often seen at pH 6.0, with permeation and kinetic properties similar to those of the channels previously observed in cultured lepidopteran cells under comparable pH environment and for the same CryIC toxin doses. We conclude that insertion of CryIC toxin in SF-9 cell native membranes and in artificial planar phospholipid bilayers may result from an identical lipid-protein interaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, A.I., Beckman, W., Dunn, P. 1986. Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 50:1–24

    Google Scholar 

  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254

    Article  CAS  PubMed  Google Scholar 

  3. Bretag, A.H. 1987. Muscle chloride channels. Physiol. Rev. 67:618–724

    Google Scholar 

  4. Brousseau, R., Masson, L. 1988. Bacillus thuringiensis insecticidal crystal toxins: gene structure and mode of action. Biotechnol. Adv. 6:697–724

    Google Scholar 

  5. Bullock, J.O. 1992. Ion selectivity of colicin E1: Modulation by pH and membrane composition. J. Membrane Biol. 125:255–271

    Google Scholar 

  6. Crawford, D.N., Harvey, W.R. 1988. Barium and calcium block Bacillus thuringiensis subspecies kurstaki δ-endotoxin inhibition of potassium current across isolated midgut of larval Manduca sexta. J. Exp. Biol. 137:277–286

    Google Scholar 

  7. Davidson, E.W. 1989. Insect cell cultures as tools in the study of bacterial protein toxins. In: Advances in Cell Culture. K. Maramorosh, editor. Vol. 7, pp. 125–146. Academic, New York

    Google Scholar 

  8. Devereux, J., Haeberli, P., Smithies, O. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395

    Google Scholar 

  9. Ellar, D.J., Thomas, W.E., Knowles, B.H., Ward, S., Todd, J., Drobniewski, F., Lewis, J., Sawyer, T., Last, D., Nichols, C. 1985. Biochemistry, genetics, and mode of action of Bacillus thuringiensis δ-endotoxins. In: Molecular Biology of Microbial Differentiation. J.A. Hoch and P. Setlow, editors. pp. 230–239. ASM Public, Washington

    Google Scholar 

  10. English, L.H., Cantley, L.C. 1985. Delta endotoxin inhibits Rb+ uptake, lowers cytoplasmic pH and inhibits a K+-ATPase in Manduca sexta CHE cells. J. Membrane Biol. 85:199–204

    Google Scholar 

  11. Fox, J.A. 1987. Ion channel subconductance states. J. Membrane Biol. 97:1–8

    Google Scholar 

  12. Gringorten, J.L., Witt, D.P., Milne, R.E., Fast, P.G., Sohi, S.S., van Frankenhuyzen, K. 1990. An in vitro system for testing Bacillus thuringiensis toxins: the lawn assay. J. Invertebr. Pathol. 56:237–242

    Google Scholar 

  13. Himeno, M. 1987. Mechanism of action of delta-endotoxin from Bacillus thuringiensis. J. Toxicol.-Toxin Rev. 6:45–71

    Google Scholar 

  14. Hoch, D.H., Finkelstein, A. 1985. Gating of large toxin channels by pH. Ann. N.Y. Acad. Sci. 456:33–35

    Google Scholar 

  15. Hodgman, T.C., Ellar, D.J. 1990. Models for the structure and function of the Bacillus thuringiensis δ-endotoxins determined by compilational analysis. DNA Sequence—J. DNA Sequencing and Mapping. 1:97–106

    Google Scholar 

  16. Höfte, H., Whiteley, H.R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53:242–255

    Google Scholar 

  17. Knowles, B.H., Blatt, M.R., Tester, M., Horsnell, J.M., Carroll, J., Menestrina, G., Ellar, D.J. 1989. A cytolytic δ-endotoxin from Bacillus thuringiensis var. israelensis forms cation-selective channels in planar lipid bilayers. FEBS Lett. 244:259–262

    Google Scholar 

  18. Knowles, B.H., White, P.J., Nicholls, C.N., Ellar, D.J. 1992. A broad-spectrum cytolytic toxin from Bacillus thuringiensis var. kyushuensis. Proc. R. Soc. London B 248:1–7

    Google Scholar 

  19. Knowles, B.H., Ellar, D.J. 1987. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensiss δ-endotoxins with different insect specificity. Biochim. Biophys. Acta 924:509–518

    Google Scholar 

  20. Laemmli, U.K., Favre, M. 1973. Maturation of the head of bacteriophage T4. I. DNA packaging events. J. Mol. Biol. 80:575–599

    Google Scholar 

  21. Li, J., Carroll, J., Ellar, D.J. 1991. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353:815–821

    Google Scholar 

  22. Masson, L., Préfontaine, G., Péloquin, L., Lau, P.C.K., Brousseau, R. 1989. Comparative analysis of the individual protoxin components in P1 crystals of Bacillus thuringiensis subsp. kurstaki isolates NRD-12 and HD-1. Biochem. J. 269:507–512

    Google Scholar 

  23. Miller, C., Racker, E. 1976. Calcium-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J. Membrane Biol. 30:271–282

    Google Scholar 

  24. Müller, P., Rudin, D.O., Tein, H.T., Wescott, W.C. 1963. Methods for formation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem. 67:534–535

    Google Scholar 

  25. Pattus, F., Massotte, D., Wilmsen, H.U., Lakey, J., Tsernoglou, D., Tucker, A., Parker, M.W. 1990. Colicins: prokaryotic killer-pores. Experientia 46:180–192

    Google Scholar 

  26. Pfannenstiel, M.A., Couche, G.A., Ross, E.J., Nickerson, K.W. 1986. Immunological relationships among proteins making up the Bacillus thuringiensis subsp. israelensis crystalline toxin. Appl. Environ. Microbiol. 52:644–649

    Google Scholar 

  27. Raymond, L., Slatin, S.L., Finkelstein, A. 1985. Channels formed by Colicin E1 in planar lipid bilayers are large and exhibit pH-dependent ion selectivity. J. Membrane Biol. 84:173–181

    Google Scholar 

  28. Ropele, M., Menestrina, G. 1990. Aspects of the molecular architecture of the channel formed by E. coli hemolysin in planar lipid membranes. In: Bacterial Protein Toxins. Rappuoli et al., editors. Zbl. Bakt. Suppl. 19, pp. 73–74. Gustav Fischer, Stuttgart

    Google Scholar 

  29. Sacchi, V.F., Parenti, P., Hanozet, G.M., Giordana, B., Lüthy, P., Wolfersberger, M.G. 1986. Bacillus thuringiensis toxin inhibits K+-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. FEBS Lett. 204:213–218

    Google Scholar 

  30. Schwartz, J.L., Garneau, L., Masson, L., Brousseau, R. 1991. Early response of cultured lepidopteran cells to exposure to δ-endotoxin from Bacillus thuringiensis: involvement of calcium and anionic channels. Biochim. Biophys. Acta 1065:250–260

    Google Scholar 

  31. Slatin, S.L., Abrams, C.K., English, L. 1990. Delta-endotoxins form cation-selective channels in planar lipid bilayers. Biochem. Biophys. Res. Comm. 169:765–772

    Google Scholar 

  32. Tocanne, J.F., Teissié, J. 1990. Ionization of phospholipids and phospholipid-supported interfacial lateral diffusion of protons in membrane model systems. Biochim. Biophys. Acta 1031:111–142

    Google Scholar 

  33. Van der Goot, F.G., Gonźalez-Mañas, J.M., Lakey, J.H., Pattus, F. 1991. A “molten-globule” membrane-insertion intermediate of the pore-forming domain of colicin A. Nature 354:408–410

    Google Scholar 

  34. Wolfersberger, M.G. 1989. Neither barium nor calcium prevents the inhibition by Bacillus thuringiensis gd-endotoxin of sodiumor potassium gradient-dependent amino acid accumulation by tobacco hornworm midgut brush border membrane vesicles. Arch. Insect Biochem. Physiol. 12:267–277

    Google Scholar 

  35. Wolfersberger, M.G., Hofmann, C., Lüthy, P. 1986. Interaction of Bacillus thuringiensis delta-endotoxin with membrane vesicles isolated from lepidopteran larval midgut. In: Bacterial Protein Toxins. Falmagne et al., editors. Zbl. Bakt. Suppl. 15, pp. 237–238. Gustav Fischer, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The assistance of A. Mazza and G.A.R. Mealing is gratefully acknowledged. The trypsin-activated, HPLC-purified CryIC toxin isolated from B. thuringiensis var. entomocidus crystal was a kind gift from M. Pusztai, Institute for Biological Sciences, NRC, Ottawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, JL., Garneau, L., Savaria, D. et al. Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation- and anion-selective channels in planar lipid bilayers. J. Membarin Biol. 132, 53–62 (1993). https://doi.org/10.1007/BF00233051

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233051

Key Words

Navigation