Skip to main content
Log in

Striatonigral GABA, dynorphin, substance P and neurokinin A modulation of nigrostriatal dopamine release: evidence for direct regulatory mechanisms

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The striatonigral pathway contains several neurotransmitters which may regulate the activity of the nigrostriatal dopamine projection in the rat. This was investigated by measuring extracellular dopamine levels in the striatum, using microdialysis, after injections of GABA (300 nmol/0.2 μl), dynorphin A (0.5 nmol/0.2 μl), substance P (0.07 mnol/0.2 μl) or neurokinin A (0.09 nmol/0.2 μl) into the ipsilateral substantia nigra, pars reticulata (SNR). Intranigral injections of GABA or dynorphin A inhibited, while intranigral injections of substance P or neurokinin A stimulated dopamine levels in the ipsilateral striatum. In rats with ibotenic acid lesions (2.5 μg/0.5 μl) in the SNR, intranigral injections of GABA or dynorphin A inhibited, while intranigral injections of substance P or neurokinin A stimulated dopamine levels in the ipsilateral striatum. These responses were not significantly different than those in unlesioned rats. Analysis of the intranigral lesion with in situ hybridization revealed a heavy loss of glutamic acid decarboxylase mRNA expression in the SNR and a significant loss of tyrosine hydroxylase (TH) mRNA expression in the SNC. Immunohistochemical analysis revealed a disappearance of TH-Like immunoreactivity (LI) im dendrites in the SNR, a considerable loss of TH-LI cell bodies in the SNC and a restricted loss of neuropeptide K-LI in the SNR around the tip of the injection cannula. Furthermore, lesioned rats rotated ipsilateral to the lesion after apomorphine (1 mg/kg, s.c.), indicating that the basal ganglia output mediated via the SNR GABA neurons was impaired on the lesioned side. Analysis of the striatum revealed that a dense TH-LI fiber network could still be seen on the lesioned side. Furthermore, basal and amphetamine stimulated extracellular dopamine levels in the striatum on the lesioned side were not significantly depleted. This indicates that the ascending nigrostriatal dopamine projection was functionally intact on the lesioned side. These findings indicate that intranigral GABA, dynorphin A, substance P and neurokinin A modulation of ipsilateral striatal dopamine release is mediated via direct action on the nigrostriatal projection. Thus, it is suggested that the striatonigral pathway, which contains GABA, dynorphin, substance P and neurokinin A, exerts a direct regulatory effect on the activity of the nigrostriatal dopamine projection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agid Y, Javoy F, Glowinski J (1973) Hyperactivity of remaining dopaminergic neurones after partial destruction of the nigrostriatal dopaminergic system. Nature (New Biol), 245:150–151

    Google Scholar 

  • Agnati LF, Fuxe K (eds) (1985) Quantitative neuroanatomy in transmitter research. Wenner-Gren Center International Symposium Series, Vol. 42, Macmillan

  • Anden N-E, Stock G (1973) Inhibitory effect of gammahydrosybutyric acid and gammaaminobutyric acid on the dopamine cells in the substantia nigra. Naunyn-Schmiedeberg's Arch Pharmacol 279:313–326

    Google Scholar 

  • Baruch P, Artaud F, Godeheu G, Barbieto L, Glowinski J, Cheramy A (1988) Substance P and neurokinin A regulate by different mechanisms dopamine release from dendrites and nerve terminals of the nigrostriatal dopaminergic neurons. Neuroscience 25:889–898

    Google Scholar 

  • Brownstein MJ, Mroz EA, Tappaz ML, Leeman SB (1977) On the origin of substance P and glutamic acid (GAD) in the substantia nigra. Brain Res 135:315–323

    Google Scholar 

  • Bunney BS, Aghajanian GK (1976) Dopaminergic influence in the basal ganglia: evidence for striatonigral feedback regulation. In: Yahr MD (eds) Basal ganglia. Raven Press, New York, pp 249–267

    Google Scholar 

  • Carlsson A, Lundqqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and noretanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144

    Google Scholar 

  • Chang HT (1988) Substance P-dopamine relationship in the rat substantia nigra: a light and electron microscope study of double immunocytochemically labeled materials. Brain Res 448:391–396

    Google Scholar 

  • Chevalier G, Deniau JM (1987) Functional significance of a double GABAergic inhibitory link in the striato-nigral-fugal pathways. In: Sandler M, Feuerstein C, Scatton C (eds) Neurotransmitter interactions in the basal ganglia. Raven Press, New York, pp 83–94

    Google Scholar 

  • Christensson-Nylander I, Herrera-Marschitz M, Staines W, Hökfelt T, Terenius L, Ungerstedt U, Cuello C, Oertel WH, Goldstein M (1986) Striato-nigral dynorphin and substance P pathways in the rat. I. Biochemical and immunohistochemical studies. Exp Brain Res 64:169–192

    Google Scholar 

  • Coons AH (1958) Fluorescent antibody methods. In: Danelli JF (eds) General cytochemical methods. Academic Press, New York, pp 399–422

    Google Scholar 

  • Deniau JM, Chevalier G (1985) Disinhibition as a basic process in the expression of striatal functions. II. The striatonigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res 334:227–233

    Google Scholar 

  • DiChiara G, Olianas M, Del Fiacco M, Spano PF, Tagliamonte A (1977) Intranigral kainic acid is evidence that nigral non-dopaminergic neurons control posture. Nature 268:743–745

    Google Scholar 

  • Gale K, Hong JS, Guidotti A (1977) Presence of substance P and GABA in separate striatonigral neurons. Brain Res 136:371–375

    Google Scholar 

  • Garcia-Munoz M, Nicolaou NM, Tulloch IF, Wright AK, Arbuthnott GW (1977) Feedback loop or output pathway in striatonigral fibers? Nature 265:363–365

    Google Scholar 

  • Glowinski J, Cheramy A, Romo R, Barbeito L (1988) Presynaptic regulation of dopaminergic transmission in the striatum. Cell Mol Neurobiol 8:7–17

    Google Scholar 

  • Grace AA, Bunney BS (1979) Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. Eur J Pharmacol 59:211–228

    Google Scholar 

  • Grima B, Lamouroux A, Blanot F, Biquet NF, Mallet J (1985) Complete coding sequence of rat tyrosine hydroxylase mRNA. Proc Natl Acad Sci USA 82:617–621

    Google Scholar 

  • Groves PM, Wilson CJ, Young W, Rebec GV (1975) Self inhibition by dopaminergic neurons. Science 190:522–529

    Google Scholar 

  • Grofova I, Deniau JM, Kitai ST (1982) Morphology of the substantia nigra pars reticulata projection neurons intracellulary labelled with HRP. J Comp Neurol 208:352–368

    Google Scholar 

  • Herrera-Marschitz M and Ungerstedt U (1984) Evidence that striatal efferents relate to different dopamine receptors. Brain Res 323:269–278

    Google Scholar 

  • Herrera-Marschitz M, Hökfelt T, Ungerstedt U, Terenius L, Goldstein M (1984) Effect of intranigral injections of dynorphin, dynorphin fragments and alpha-neoendorphin on rotational behavior in the rat. Eur J Pharmacol 102:213–227

    Google Scholar 

  • Herrera-Marschitz M, Christensson-Nylander I, Sharp T, Staines W, Reid M, Hökfelt T, Terenius L, Ungerstedt U (1986) Striatonigral dynorphin and substance P pathways in the rat. II. Functional analysis. Exp Brain Res 64:193–206

    Google Scholar 

  • Herrera-Marschitz M (1986) Neuropharmacology and functional anatomy of the basal ganglia. Thesis. Karolinska Institute, Stockholm, pp 1–79,

    Google Scholar 

  • Herrera-Marschitz M, Nylander I, Reid M, Sharp T, Staines W, Hökfelt T, Terenius L, Ungerstedt U (1987) Evidence that B-proenkephalinergic and protachykininergic striato-nigral pathways represent different functional units in the nigro-striatonigral system of the rat. In: Henry J, Couture R, Cuello AC, Pelletier G, Quirion R, Regoli D (eds) Substance P and neurokinins. Springer, New York, pp 353–355

    Google Scholar 

  • Herrera-Marschitz M, Utsumi H, Ungerstedt U (1990) Scoliosis in rats with experimentally-induced hemiparkinsonism: dependence upon striatal dopamine denervation. J Neurol Neurosurg Psychiat 53:39–43

    Google Scholar 

  • Holstein GR, Pasik P, Hamori J (1986) Synapses between GABA immunoreactive axonal and dendritic elements in monkey. Neurosci Lett 66:316–322

    Article  CAS  PubMed  Google Scholar 

  • Johnson DG and de C Nogueira Araujo, GM (1981) A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods 43:349–350

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa I, Emson PC, Cuello C (1977) Evidence for the existence of substance P containing fibers in striato-nigral and pallidonigral pathways in rat brain. Brain Res 119:447–453

    Google Scholar 

  • Kobayashi Y, Kaufman DL, Tobin AJ, (1987) Glutamic acid decarboxylase cDNA: nucleotide sequence encoding an enzymatically active fusion protein. Neurosci 7:2768–2772

    Google Scholar 

  • Lee JM, McLean S, Maggio JE, Zamir N, Roth RH, Eskay RL, Bannon MJ (1986) The localization and characterization of substance P and substance K in striato-nigral neurons. Brain Res 371:152–154

    Google Scholar 

  • Lindefors N, Brodin E, Ungerstedt U (1986) Neurokinin A and substance P in striato-nigral neurons in rat brain. Neuropeptides 8:127–132

    Google Scholar 

  • Lindefors N, Brene S, Herrera-Marschitz M, Persson H (1989) Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain. Exp Brain Res 77:611–620

    Google Scholar 

  • Ljungdahl A, Hökfelt T, Nilsson G (1978a) Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience 3:861–943

    Article  CAS  PubMed  Google Scholar 

  • Ljungdahl A, Hökfelt T, Nilsson G, Goldstein M (1978b) Distribution of substance P-like immunoreactivity in the central nervous system in the rat. II. Light microscopic localization in relation to catecholamine containing neurons. Neuroscience 3:945–976

    Google Scholar 

  • Markey KA, Kondo S, Shenkman I, Goldstein M (1980) Purification and characterization of tyrosine hydroxylase from clonal pheochromocytoma cell line. Mol Pharmacol 17:79–85

    Google Scholar 

  • Marshall JF, Ungerstedt U (1977) Striatal efferent fibers play a role in maintaining rotational behavior in the rat. Science 198:62–64

    Google Scholar 

  • Melis MR, Gale K (1984) Evidence that nigral substance P controls the activity of the nigrotectal GABAergic pathway. Brain Res 295:389–393

    Google Scholar 

  • Nauta WHJ (1979) A proposed conceptual reorganization of the basal ganglia and telencephalon. Neuroscience 4:1875–1881

    Google Scholar 

  • Nauta WHJ, Domesick VB (1979) The anatomy of the extrapyramidal system. In: Fuxe K, Calne DB (eds) Dopaminergic ergot derivatives and motor function. Wenner-Gren Center international symposium series, Vol 31. Pergamon Press, Oxford, pp 3–22

    Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Reid M, Herrera-Marschitz M, Hökfelt T, Terenius L, Ungerstedt U (1988) Differential modulation of striatal dopamine release by intranigral injection of gamma-aminobutyric acid (GABA), dynorphin A and substance P. Eur J Pharmacol 147:411–420

    Google Scholar 

  • Reid MS, Herrera-Marschitz M, Hökfelt T, Ohlin M, Valentino VL, Ungerstedt U (1990a) Effects of intranigral substance P and neurokinin A on striatal dopamine release. I. Interactions with substance P antagonists. Neuroscience 36:643–658

    Google Scholar 

  • Reid MS, Herrera-Marschitz M, Ungerstedt U (1990b) Effects of intranigral substance P and neurokinin A on striatal dopamine release. II. Interactions with bicuculline and naloxone. Neuroscience 36:659–667

    Google Scholar 

  • Robinson TE, Wishaw IQ (1988) Normalization of extracellular dopamine in striatum following recovery from a partial unilateral 6OHDA lesion of the substantia nigra: a microdialysis study in freely moving rats. Brain Res 450:209–224

    Google Scholar 

  • Savaki HE, Desban M, Glowinski J, Besson MJ (1983) Local cerebral glucose consumption in the rat. II. Effects of unilateral substantia nigra stimulation in conscious and halothane anaesthetized animals. J Comp Neurol 213:46–65

    Google Scholar 

  • Schwarcz R, Hökfelt T, Fuxe K, Jonsson G, Goldstein M, Terenius L (1979) Ibotenic acid-induced neuronal degeneration: a morphological and neurochemical study. Exp Brain Res 37:199–216

    Google Scholar 

  • Somogyi P, Hodgson AJ, Smith AD (1979) An approach to tracing neuron networks in the cerebral cortex and basal ganglia: combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material. Neuroscience 4:1805–1852

    Google Scholar 

  • Somogyi P, Priestley JV, Cuello AC, Smith AD, Bolam JP (1982) Synaptic connections of substance P-immunoreactive nerve terminals in the substantia nigra of the rat. Cell Tissue Res 223:469–486

    Google Scholar 

  • Starr MS, Summerhayes M, Kilpatrick IC (1983) Interactions between dopamine and gamma-aminobutyrate in the substantia nigra: implications for the striatonigral output hypothesis. Neuroscience 8:547–559

    Google Scholar 

  • Tatemoto K, Lundberg JM, Jörnvall H, Mutt V (1985) Neuropeptide K-isolation, structure and biological activities of a novel brain tachykinin. Biochem Biophys Res 128:947–953

    Google Scholar 

  • Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system Brain Res 24:485–493

    Article  CAS  PubMed  Google Scholar 

  • Valentino KL, Tatemoto K, Hunter J, Barchas JD (1986) Distribution of neuropeptide K-immunoreactivity in the rat central nervous system. Peptides 7:1043–1059

    Google Scholar 

  • van den Pol AN, Smith AD, Powell JF (1985) GABA axons in synaptic contact with dopamine neurons in the substantia nigra: double immunocytochemistry with biotinperoxidase and protein A-colloidal gold. Brain Res 348:146–154

    Google Scholar 

  • Vincent S, Hökfelt T, Christensson I, Terenius L (1982) Immunohistochemical evidence for a dynorphin immunoreactive striato-nigral pathway. Eur J Pharmacol 85:251–252

    Google Scholar 

  • Williams MN, Faull RLM (1985) The striatonigral projection and nigrotectal neurons in the rat: a correlated light and electron microscope study demonstrating a monosynaptic striatal input to identified nigrotectal neurons using a combined degeneration and horseradish peroxidase procedure. Neuroscience 14:991–1010

    Google Scholar 

  • Zamboni L, DeMartino C (1967) Buffered picric acid formaldehyde: a new rapid fixative for electron microscopy. J Cell Biol 148A:35

    Google Scholar 

  • Zhang WQ, Tilson HA, Nanry KP, Hudson PM, Hong JS, Stachowiak MK (1988) Increased dopamine release from striata of rats after unilateral nigrostriatal bundle damage. Brain Res 461:335–342

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, M.S., Herrera-Marschitz, M., Hökfelt, T. et al. Striatonigral GABA, dynorphin, substance P and neurokinin A modulation of nigrostriatal dopamine release: evidence for direct regulatory mechanisms. Exp Brain Res 82, 293–303 (1990). https://doi.org/10.1007/BF00231249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231249

Key words

Navigation