Skip to main content
Log in

Astigmatism of the mammalian cornea: Evolutionary and perceptive significance

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Astigmatism enables spatial, linear and directional discrimination. These faculties are demonstrated by astigmatic photographic experiments.

Comparative anatomic deductions lead to the assumption that the eyes of early mammals were astigmatic. Thereby these animals, lacking binocularity and accommodation, could achieve visual spatial information. This assumption is supported by the fact that features of astigmatic refraction, specially straight linearity, have been adopted by various intra-ocular structures, and by the neuronal structuralisation of receptive fields in the visual cortex of mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, H.B., Blakemore, C. & Pettigrew, J.D. The neural mechanism of binocular depth discrimination. J. Physiol. (London) 193: 327–342 (1967).

    Google Scholar 

  • Barlow, H.B., Narasimhan, R & Rosenfeld, A. Visual pattern analysis in machines and animals. Science 177: 567 (1972).

    Google Scholar 

  • Blakemore, C. & Cooper, G.F. Development of the brain depends on the visual environment. Nature 228: 477 (1970).

    Google Scholar 

  • Brückner, R. Beiträge zur Biologie des Auges. Biol. Zentralbl. 80: 129–136 (1961).

    Google Scholar 

  • Donders, F.C. On the Anomalies of Accommodation and Refraction of the eye. London (1864a). Abridged reprint, De Erven F. Bohn N.V., Haarlem, p. 204 (1962).

    Google Scholar 

  • Donders, F.C. On the Anomalies of Accommodation and Refraction of the Eye. London (1864a). Abridged reprint, De Erven F. Bohn N.V., Haarlem, p. 207 (1864b).

    Google Scholar 

  • Duke Elder, S. System of Ophthalmology, Vol. I, H. Kimpton, London, p. 472 (1958a).

    Google Scholar 

  • Duke Elder, S. System of Ophthalmology, Vol. I, H. Kimpton, London, p. 491 (1958b).

    Google Scholar 

  • Duke Elder, S. System of Ophthalmology, Vol. V, H. Kimpton, London, p. 278 (1970a).

    Google Scholar 

  • Duke Elder, S. System of Ophthalmology, Vol. V, H. Kimpton, London, p. 275 (1970b).

    Google Scholar 

  • Freeman R.D., Mitchell, D.E. & Millodot, M. A neural effect of partial visual deprivation in humans. Science 175: 1384 (1972).

    Google Scholar 

  • von Helmholtz, H. Vorträge und Reden. Braunschweig 1: 286 (1903).

    Google Scholar 

  • Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (London) 160/1: 106–154 (1962).

    Google Scholar 

  • Jerison. H.J. Evolution of the Brain and Intelligence, pp. 262–275, Academic Press (1973).

  • Jerison, H.J. Paleoneurology and the evolution of mind. Sc. Amer. 234/1: 90 (1976).

    Google Scholar 

  • Johnson, G.L. Observations on the refraction and vision of the seal's eye. Proc. Zool. Soc. London, pp. 719–723 (1893).

  • Johnson, G.L. Ophthalmoscopic studies on the eyes of mammals. Phil. Trans. Roy. Soc. London 254: 207–220 (1968).

    Google Scholar 

  • Kuffler, S.W. Neurones in the retina: organization, inhibition and excitation problems. Cold Spring Harb. Symp. Quant. Biol. 17: 281–292 (1952).

    Google Scholar 

  • Lettvin, J.Y., Maturana, H.R., McCulloch, W.S. & Pitts, W.H. What the frog's eye tells the frog's brain. Proc. Inst. Radio Eng. N.Y. 47: 1940–1951 (1959).

    Google Scholar 

  • Polyak, S. The Vertebrate Visual System, pp. 954, 968. The University of Chicago Press, Chicago and London (1957).

    Google Scholar 

  • Rochon-Duvigneaud, A. Les Yeux et la Vision des Vertébrés, p. 585. Masson et Cie., Paris (1943).

    Google Scholar 

  • Rodieck, R.W. The Vertebrate Retina. P. 360. W.H. Freeman & Co. (1973).

  • Romer, A.S. Vertebrate Paleontology. p. 202, University of Chicago Press, Chicago and London. (1966).

    Google Scholar 

  • Stone J. & Freeman, R.B. Jr. Neurophysiology of Form Discrimination, in: Handbook of Sensory Physiology, Vol. VII, part 3/A, P. 167. Springer-Verlag, Berlin (1973).

    Google Scholar 

  • Tansley, K.T. Vision in Vertebrates. Chapman & Hall, London, p. 60 (1965a).

    Google Scholar 

  • Tansley, K.T. Vision in Vertebrates, Chapman & Hall, London, p. 72 (1965b).

    Google Scholar 

  • Walls, G.L. The Vertebrate Eye and Its Adaptive Radiation. The Cranbrook Institute of Science, Bloomfield Hills, Michigan, p. 187 (1942a).

    Google Scholar 

  • Walls, G.L. The Vertebrate Eye and Its Adaptive Radiation. The Cranbrook Institute of Science, Bloomfield Hills, Michigan, p. 287 (1942b).

    Google Scholar 

  • Walls, G.L. The Vertebrate Eye and Its Adaptive Radiation. The Cranbrook Institute of Science, Bloomfield Hills, Michigan, p. 28 (1942c).

    Google Scholar 

  • Walls, G.L. The Vertebrate Eye and Its Adaptive Radiation. The Cranbrook Institute of Science, Bloomfield Hills, Michigan, pp. 686–689 (1942d).

    Google Scholar 

  • Walls, G L. The evolutionary history of eye movements. Vision Res. 2: 69–80 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shilo, S. Astigmatism of the mammalian cornea: Evolutionary and perceptive significance. Doc Ophthalmol 44, 403–419 (1977). https://doi.org/10.1007/BF00230090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230090

Keywords

Navigation