Skip to main content
Log in

Cytoarchitectonic pattern of the hypothalamus in the cobra, Naja naja

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The distribution and cytoarchitectonic pattern of the magno- and parvocellular hypothalamic nuclei of the cobra, Naja naja, are described at the light-microscopic level. With respect to their tinctorial affinity to paraldehyde fuchsin (AF) as a representative of the Gomori-type of stains, the magnocellular neurons belong to the “AF-positive” and the parvocellular neurons to the “AF-negative” elements. In addition to the supraoptic and paraventricular nuclei proper, two accessory aggregations of magnocellular neurons, the nucleus retrochiasmaticus and nucleus circularis, can be identified. Although in a peculiar location, they may be regarded as subunits of the supraopticoparaventricular neurosecretory complex. As many as 22 “AF-negative” nuclear areas are identified in the hypothalamus of the cobra. The nucleus periventricularis hypothalami of earlier authors is subdivided into several circumscribed neuronal complexes. The nucleus arcuatus, nucleus hypothalamicus lateralis and nucleus lateralis recessus infundibuli are well developed. An attempt is made to interpret the significance of these nuclei on a comparative and phylogenetic basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Messeih, Twafik J (1963) Effect of starvation on the activity of the hypothalamo-hypophysial system of Varanus griseus Daud. Z Zellforsch 59:395–404

    Google Scholar 

  • Adams CWM, Sloper JC (1956) The hypothalamic elaboration of posterior pituitary principles in man, the rat and dog. Histochemical evidence derived from a performic-alcian blue reaction for cystine. Endocrinology 13:221–228

    Google Scholar 

  • Ananthanarayanan V (1955) Nature and distribution of neurosecretory cells of the reptilian brain. Z Zellforsch 43:8–16

    Google Scholar 

  • Ariens Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, Vol II. Macmillan Co, New York

    Google Scholar 

  • Arimura A, Findley A (1971) Hypothalamic map for the regulation of gonadotropin release based mainly on data obtained in the rat. Res Reproduct 3 No 1

  • Bargmann W (1949) Über die neurosekretorische Verknüpfung von Hypothalamus und Neurohypophyse. Z Zellforsch 34:610–634

    Google Scholar 

  • Bodian D, Mären TH (1951) The effect of neuro- and adenohypophysectomy on retrograde degeneration in hypothalamic nuclei of the rat. J Comp Neurol 94:485–504

    Google Scholar 

  • Butler AB, Northcutt RG (1973) Architectonic studies of the diencephalon of Iguana iguana Linnaeus. J Comp Neurol 149:439–462

    Google Scholar 

  • Crosby EC (1917) The forebrain of Alligator mississippiensis. J Comp Neurol 27:325–402

    Google Scholar 

  • Crosby EC, Woodburne RT (1940) The comparative anatomy of the preoptic area and the hypothalamus. Assoc Res Nerv Ment Dis, Proc 20:52–169

    Google Scholar 

  • Crosby EC, Showers MJ (1969) Comparative anatomy of the preoptic and hypothalamic areas. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Springfield III, Ch C Thomas, pp 61–135

    Google Scholar 

  • Cruce JAF (1974) A cytoarchitectonic study of the diencephalon of the tegu lizard, Tupinambis nigropunctatus. J Comp Neurol 153:215–238

    Google Scholar 

  • Diepen R (1962) Der Hypothalamus. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen. Vol IV (7). Springer, Berlin Göttingen Heidelberg, pp 1–500

    Google Scholar 

  • Dierickx K, Druyts A, Vandenberghe MP, Goossens N (1972) Identification of adenohypophysiotropic neurohormone producing neurosecretory cells in Rana temporaria. I. Ultrastructural evidence for the presence of neurosecretory cells in the tuber cinereum. Z Zellforsch 134:459–504

    Google Scholar 

  • Dierickx K, Goossens N, Vandenberghe MP (1973) Identification of adenohypophysiotropic neurohormone producing neurosecretory cells in Rana temporaria. III. The tubero-hypophysial monoaminergic fibres and the role of the tubero-hypophysial neurosecretory system. Z Zellforsch 143:93–106

    Google Scholar 

  • Ebbesson SOE (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213:179–212

    Google Scholar 

  • Fuxe K, Hökfelt T (1970) Participation of central monoamine neurons in the regulation of anterior pituitary function with special regard to the neuroendocrine role of tubero-infundibular dopamine neurons. In: Bargmann W, Scharrer B (eds) Aspects of neuroendocrinology. Springer, Berlin Heidelberg New York, pp 192–205

    Google Scholar 

  • Gabe M (1953) Sur quelques applications de la coloration par la fuchsine-paraldéhyde. Bull Micr Appl 3:152–162

    Google Scholar 

  • Gesell MS, Callard IP (1972) The hypothalamic-hypophysial neurosecretory system in the iguanid lizard, Dipsosaurus dorsalis: A qualitative and quantitative study. Gen Comp Endocrinol 19:397–404

    Google Scholar 

  • Goossens N, Dierickx K, Vandesande F (1979) Immunocytochemical localization of vasotocin and mesotocin in the hypothalamus of lacertilian reptiles. Cell Tissue Res 200:223–227

    Google Scholar 

  • Goossens N, Dierickx K, Vandesande F (1980) Immunocytochemical localization of somatostatin in the brain of the lizard, Ctenosauria pectinata. Cell Tissue Res 208:499–505

    Google Scholar 

  • Haider S, Sathyanesan AG (1974) Hypothalamo-hypophysial neurosecretory and portal system of the Indian wall lizard, Hemidactylus flaviviridis. Acta Anat (Basel) 88:502–519

    Google Scholar 

  • Hoffmann A (1973) Stereotaxic atlas of the toad's brain. Acta Anat (Basel) 84:416–451

    Google Scholar 

  • Huber GC, Crosby EC (1926) On the thalamic and tectal nuclei and fiber paths in the brain of the American alligator. J Comp Neurol 40:97–227

    Google Scholar 

  • Huber GC, Crosby EC (1929) The nuclei and fiber paths of the avian diencephalon with consideration of telencephalic and certain mesencephalic centers and connections. J Comp Neurol 48:1–225

    Google Scholar 

  • Ito H (1965) The neurosecretory apparatus in the ventricular wall of the reptilian brain. J Hirnforsch 7:493–498

    Google Scholar 

  • Klüver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12:400–403

    Google Scholar 

  • Marschall C (1980) Hypothalamic monoamines in lizards (Lacerta). Cell Tissue Res 205:95–105

    Google Scholar 

  • Murakami M (1963) Weitere Untersuchungen über die Feinstruktur der neurosekretorischen Zellen im Nucleus supraopticus von Gecko japonicus. Z Zellforsch 59:684–699

    Google Scholar 

  • Northcutt RG, Butler AB (1974) Retinal projections in the Northern water snake, Natrix sipedon sipedon (L.). J Morphol 142:117–138

    Google Scholar 

  • Oehmke HJ (1971 a) Vergleichende neurohistologische Studien am Nucleus infundibularis einiger australischer Vögel. Z Zellforsch 122:122–138

    Google Scholar 

  • Oehmke HJ (1971 b) Struktur eines gonadenwirksamen Komplexes im Zwischenhirn-Hypophysensystem der Vögel. Modellstudie mit neuroanatomischen, fluoreszenzmikroskopischen und elektronenmikroskopischen Beiträgen. Habilitationsschrift, Justus-Liebig-Universität, Giessen

    Google Scholar 

  • Oehmke HJ, Oksche A (1974) Betrachtungen zum Homologieproblem der Tuberkerne. Verh Anat Ges 68:305–313

    Google Scholar 

  • Oksche A (1976) The neuroanatomical basis of comparative neuroendocrinology. Gen Comp Endocrinol 29:225–239

    Google Scholar 

  • Oksche A (1978a) Pattern of neuroendocrine cell complexes (subunits) in hypothalamic nuclei: Neurobiological and phylogenetic concepts. In: Bargmann W, Oksche A, Polenov A, Scharrer B (eds) Neurosecretion and neuroendocrine activity. Evolution, structure and function. Springer Verlag, Berlin Heidelberg New York, pp 64–71

    Google Scholar 

  • Oksche A (1978b) Evolution, differentiation and organization of hypothalamic systems controlling reproduction. In: Scott DE, Kozlowski GP, Weindl A (eds) Brain-endocrine interaction. III. Neural hormones and reproduction. S. Karger AG, Basel, pp 1–15

    Google Scholar 

  • Oksche A, Farner DS (1974) Neurohistochemical studies of the hypothalamo-hypophysial system of Zonotrichia leucophrys gambelii (Aves, Passeriformes). With special attention to its role in the control of reproduction. Ergebn Anat Entwickl-Gesch 48 (4):1–136

    Google Scholar 

  • Pandalai KR (1958) Morphology of the neurosecretory cells of Calotes versicolor. J Anat Soc India 7:92–104

    Google Scholar 

  • Pandalai KR (1960) Reactions of neurosecretory cells of Calotes versicolor to dehydration, stress, variations in temperature, blinding and injection of sex hormones. J Anat Soc India 9:88–96

    Google Scholar 

  • Pandalai KR, Sheela R (1969) Hypothalamic control of the pars intermedia of the pituitary gland in the garden lizard, Calotes versicolor. Gen Comp Endocrinol, Suppl 2: 477–484

  • Parent A, Poitras D (1974) Morphological organization of monoamine-containing neurons in the hypothalamus of the painted turtle (Chrysemys picta). J Comp Neurol 154:379–394

    Google Scholar 

  • Peter RE, Gill VE (1975) A stereotaxic atlas and technique for forebrain nuclei of the goldfish, Carassius auratus. J Comp Neurol 159:69–102

    Google Scholar 

  • Peterson RP (1966) Magnocellular neurosecretory centers in rat hypothalamus. J Comp Neurol 128:181–190

    Google Scholar 

  • Philibert RL, Kamemoto FI (1965) The hypothalamo-hypophyseal neurosecretory system of the ring-necked snake, Diadophis punctatus. Gen Comp Endocrinol 5:326–335

    Google Scholar 

  • Prasada Rao PD, Hartwig HG (1974) Monoaminergic tracts of the diencephalon and innervation of the pars intermedia in Rana temporaria. A fluorescence and microspectrofluorimetric study. Cell Tissue Res 151:1–26

    Google Scholar 

  • Prasada Rao PD, Subhedar N (1977) A cytoarchitectonic study of the hypothalamus of the lizard, Calotes versicolor. Cell Tissue Res 180:63–85

    Google Scholar 

  • Scharrer E (1951) Neurosecretion. X. A Relationship between the paraphysis and the paraventricular nucleus in the garter snake (Thamnophis sp.). Bull Biol 101:106–113

    Google Scholar 

  • Scharrer E, Scharrer B (1954) Neurosekretion. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen. Springer, Berlin Göttingen Heidelberg, pp 953–1066

    Google Scholar 

  • Senn DG (1974) Notes on the amphibian and reptilian thalamus. Acta Anat (Basel) 87:555–596

    Google Scholar 

  • Sharp PJ, Follett BK (1970) The adrenergic supply within the avian hypothalamus. In: Bargmann W, Scharrer B (eds) Aspects of neuroendocrinology. Springer, Berlin Heidelberg New York, pp 95–103

    Google Scholar 

  • Sheela R, Pandalai KR (1968) Reaction of the paraventricular nucleus to dehydration in the garden lizard, Calotes versicolor. Gen Comp Endocrinol 11:257–261

    Google Scholar 

  • Sloper JC (1962) Morphological aspects of the hypothalamic control of anterior pituitary function. In: Currie AR, Symington T, Grant JC (eds) Proceedings of a conference on the human adrenal cortex. Livingstone Edinburgh London, pp 203–247

    Google Scholar 

  • Szentágothai J, Flerkó B, Mess B, Halász B (1968) Hypothalamic control of the anterior pituitary. Budapest, Akadémiai Kiadó

    Google Scholar 

  • Warren Soest S, Farner DS, Oksche A (1973) Fluorescence microscopy of neurons containing primary catecholamines in the ventral hypothalamus of the White-crowned Sparrow, Zonotrichia leucophrys gambelii. Z Zellforsch 141:1–17

    Google Scholar 

  • Wingstrand KG (1951) The structure and development of the avian pituitary from a comparative and functional viewpoint. Gleerup, Lund

    Google Scholar 

  • Zaloglu S (1973) The hypothalamo-hypophysial neurosecretory system and its relation to the reproductive cycle of the lizard Ophisops elegans Menet. Seientific Reports of the Faculty of Science, Ege University no 151. Ege Universitesi Mathaasi. Bornova-Izmir

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the Department of Zoology, Nagpur University, Nagpur, India

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasada Rao, P.D., Subhedar, N. & David Raju, P. Cytoarchitectonic pattern of the hypothalamus in the cobra, Naja naja . Cell Tissue Res. 217, 505–529 (1981). https://doi.org/10.1007/BF00219361

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00219361

Key words

Navigation