Skip to main content
Log in

[2-3H]ATP synthesis and 3H NMR spectroscopy of enzyme-nucleotide complexes: ADP and ADP.Vi bound to myosin subfragment 1

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The synthesis of [2-3H]ATP with specific activity high enough to use for 3H NMR spectroscopy at micromolar concentrations was accomplished by tritiodehalogenation of 2-Br-ATP. ATP with greater than 80% substitution at the 2-position and negligible tritium levels at other positions had a single 3H NMR peak at 8.20 ppm in 1D spectra obtained at 533 MHz. This result enables the application of tritium NMR spectroscopy to ATP utilizing enzymes.

The proteolytic fragment of skeletal muscle myosin, called S1, consists of a heavy chain (95 kDa) and one alkali light chain (16 or 21 kDa) complex that retains myosin ATPase activity. In the presence of Mg2+, S1 converts [2-3H]ATP to [2-3H]ADP and the complex S1.Mg[2-3H]ADP has ADP bound in the active site. At 0°C, 1D 3H NMR spectra of S1.Mg[2-3H]ADP have two broadened peaks shifted 0.55 and 0.90 ppm upfield from the peak due to free [2-3H]ADP. Spectra with good signal-to-noise for 0.10 mM S1.Mg[2-3H]ADP were obtained in 180 min. The magnitude of the chemical shift caused by binding is consistent with the presence of an aromatic side chain being in the active site. Spectra were the same for S1 with either of the alkali light chains present, suggesting that the alkali light chains do not interact differently with the active site. The two broad peaks appear to be due to the two conformations of S1 that have been observed previously by other techniques. Raising the temperature to 20 °C causes small changes in the chemical shifts, narrows the peak widths from 150 to 80 Hz, and increases the relative area under the more upfield peak. Addition of orthovanadate (Vi) to produce S1.Mg[2-3H]ADP.Vi shifts both peaks slightly more upfield without chaning their widths or relative areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Rawi, J.M.A., Bloxsidge, J.P., O'Brien, C., Caddy, D.E., Elridge, J.A., Jones, J.R. and Evans, E.A. (1974) J. Chem. Soc. Perkin Trans. 2, 1635–1639.

  • Bagshaw, C.R. and Trentham, D.R. (1974) Biochem. J., 141, 331–349.

    Google Scholar 

  • Botts, J., Thomason, J.F. and Morales, M.F. (1989) Proc. Natl. Acad. Sci. USA, 86, 2204–2208.

    Google Scholar 

  • Cremo, C.R., Grammer, J.C. and Yount, R.G. (1989) J. Biol. Chem., 264, 6608–6611.

    Google Scholar 

  • Dwek, R.A. (1973) Nuclear Magnetic Resonance in Biochemistry, Clarendon, Oxford, pp. 48–54.

    Google Scholar 

  • Eckstein, F. and Goumet, M. (1978) In Nucleic Acid Chemistry, Vol. 2 (Eds., Townsend, L.B. and Tipson, R.S.) Wiley, New York, pp. 861–864.

    Google Scholar 

  • Elvidge, J.A., Jones, J.R., O'Brien, C., Evans, E.A. and Sheppard, H.C. (1973) J. Chem. Soc., Perkin Trans. 2, 2138–2141.

  • Evans, E.A., Sheppard, H.C., Turner, J.C. and Warrell, D.C. (1974) J. Label. Compounds Radiopharm., 10, 569–587.

    Google Scholar 

  • Goodno, C.C. (1979) Proc. Natl. Acad. Sci. USA, 76, 2620–2624.

    Google Scholar 

  • Highsmith, S. (1976) J. Biol. Chem., 251, 6170–6172.

    Google Scholar 

  • Highsmith, S. and Murphy, A.J. (1992) Biochemistry, 31, 385–389.

    Google Scholar 

  • Highsmith, S., Akasaka, K., Konrad, M., Goody, R., Holmes, K., Wade-Jardetzky, N. and Jardetzky, O. (1979) Biochemistry, 18, 4238–4244.

    Google Scholar 

  • Hoard, D.E. and Ott, D.G. (1965) J. Am. Chem. Soc., 87, 1785–1788.

    Google Scholar 

  • Jardetzky, O. and Roberts, G.C.K. (1981) NMR in Molecular Biology, Academic Press, New York, pp. 379–412.

    Google Scholar 

  • Kasprzak, A.A., Chaussepied, P. and Morales, M.F. (1989) Biochemistry, 28, 9230–9238.

    Google Scholar 

  • Kendrick-Jones, J., Lehman, W. and Szent-Gyoryi, A.G. (1970) Methods Enzymol., 11, 199–203.

    Google Scholar 

  • Lin, S.H. and Cheung, H.C. (1991) Biochemistry, 30, 4317–4322.

    Google Scholar 

  • Mahmood, R., Elzinga, M. and Yount, R.G. (1989) Biochemistry, 28, 3989–3995.

    Google Scholar 

  • Montgomery, J.A. and Hewson, K. (1964) J. Heterocyclic Chem., 1, 213–214.

    Google Scholar 

  • Morita, F. (1967) J. Biol. Chem., 242, 4501–4506.

    Google Scholar 

  • Murphy, A.J. (1974) Arch. Biochem. Biophys., 163, 290–296.

    Google Scholar 

  • Nair, V. and Richardson, S.G. (1982) Synthesis, 670–672.

  • Newmark, R.D., Un, S., Williams, P.G., Carson, P.L., Morimoto, H. and Klein, M.P. (1990) Proc. Natl. Acad. Sci. USA, 87, 583–587.

    Google Scholar 

  • Okamoto, Y. and Yount, R.G. (1985) Proc. Natl. Acad. Sci. USA, 82, 155–159.

    Google Scholar 

  • Papp, S., Eden, D. and Highsmith, S. (1992) Biochim. Biophys. Acta, 1159, 267–273.

    Google Scholar 

  • Pate, E., Nakamaye, K.L., Franks-Skiba, K., Yount, R.G. and Cooke, R. (1991) Biophys. J., 59, 598–605.

    Google Scholar 

  • Peyser, Y.M., Muhlrad, A. and Werber, M.M. (1990) FEBS Lett., 259, 346–348.

    Google Scholar 

  • Prince, H.P., Trayer, H.R., Henry, G.D., Trayer, I.P., Dalgarno, D.C., Levine, B.A., Cary, P.D. and Turner, C. (1981) Eur. J. Biochem., 121, 213–219.

    Google Scholar 

  • Robins, M.J. and Uznanski, B. (1986) In Nucleic Acid Chemistry, Vol. 3 (Eds., Townsend, L.B. and Tipson, R.S.) Wiley, New York, pp. 144–148.

    Google Scholar 

  • Rosenfield, S.S. and Taylor, E.W. (1984) J. Biol. Chem., 259, 11920–11929.

    Google Scholar 

  • Shriver, J.W. and Sykes, B.D. (1981) Biochemistry, 20, 2004–2012.

    Google Scholar 

  • Sutoh, K. (1987) Biochemistry, 26, 7648–7654.

    Google Scholar 

  • Taylor, E.D. (1979) CRC Crit. Rev. Biochem., 6, 103–106.

    Google Scholar 

  • Tokunaga, M., Sutoh, K., Toyoshima, C. and Wakabayashi, T. (1987) Nature (London), 329, 635–638.

    Google Scholar 

  • Toyoshima, Y.Y., Kron, S.J., McNally, E.M., Niebling, K.R., Toyoshima, C. and Spudich, J.A. (1987) Nature (London), 328, 536–539.

    Google Scholar 

  • Wagner, P.D. and Giniger, E. (1981) Nature (London), 292, 560–562.

    Google Scholar 

  • Walker, J.E., Seraste, M., Runswick, M.J. and Gay, N.J. (1982) EMBO J., 1, 945–951.

    Google Scholar 

  • Weeds, A.G. and Taylor, R.S. (1975) Nature (London), 257, 54–56.

    Google Scholar 

  • Werber, M.M., Szent-Gyorgyi, A.G. and Fasman, G.D. (1972) Biochemistry, 11, 2872–2883.

    Google Scholar 

  • Yamamoto, K. (1990) Biochemistry, 29, 844–848.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Highsmith, S., Kubinec, M., Jaiswal, D.K. et al. [2-3H]ATP synthesis and 3H NMR spectroscopy of enzyme-nucleotide complexes: ADP and ADP.Vi bound to myosin subfragment 1. J Biomol NMR 3, 325–334 (1993). https://doi.org/10.1007/BF00212518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00212518

Keywords

Navigation