Skip to main content
Log in

Synthesis, spectroscopic, magnetic, conductometric and electro-chemical investigations of nickel(II)-1-phenyl-4,6-dimethylpyrimidine-2-thione complexes

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Tris-, bis- and mono-ligand complexes of NiII with 1-phenyl-4, 6-dimethylpyrimidine-2-thione (L) having the general formulae NiL3X2·2H2O (X = ClO p−inf4 , BF p−inf4 ), NiL2X2 (X = Cl, Br, SCN or NO p−inf3 ), NiL2X2·EtOAc (X = Br or I), NiL2X2·H2O·EtOH (X = I or NO p−inf3 ) and NiLCl2·3H2O, were synthesized and their structures deduced from i.r. and electronic spectra, and magnetic properties. The combined evidence is consistent with an octahedral coordination for the NiII ion in all the complexes, with the ligand acting as a bidentate N,S-chelating agent. Spectral evidence, conductivity data and electro-chemical results in DMF solution show that the complexes undergo solvolysis readily. Polarographic and c.v. data for the [NiL3](ClO4)2·2H2O complex and for the [Ni-(DMF)6](ClO4)2-L systems, at increasing ligand concentrations, have shown that in DMF solution the [Ni(DMF)6]2+ cation prevails and that the thiopyrimidine-containing species, [NiL(DMF)5]2+ (L = N-monodentate ligand) \((\beta = 2.42 \times 10^6 )\), can be formed only in the presence of a large excess of free ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. T. Hurst, An Introduction to the Chemistry and Bio-chemistry of Pyrimidines, Purines and Pteridines, Wiley, New York, 1980.

    Google Scholar 

  2. D. J. Brown, Comprehensive Heterocyclic Chemistry, Pergamon Press, New York, 1984, Vol. 3, p. 57.

    Google Scholar 

  3. R. K. Robins, J. Med. Chem., 7, 186 (1964).

    Google Scholar 

  4. R. Hamers and C. Hamers-Casterman, J. Mol. Biol., 3, 166 (1972).

    Google Scholar 

  5. H. Holy, I. Votruba and K. Jost, Collect. Czech. Chem. Commun., 39, 364 (1974).

    Google Scholar 

  6. S. K. Naik, R. K. Behera and A. Nayak, Indian J. Chem., 21B, 1124 (1982).

    Google Scholar 

  7. D. H. Petering, W. F. Antholine and L. A. Saryan, Anticancer and Interferon Agents, Dekker, New York, 1984, Ch. 7.

    Google Scholar 

  8. E. S. Raper, Coord. Chem. Rev., 61, 115 (1985); 129, 91 (1994); and references therein.

    Google Scholar 

  9. J. Abbot, D. L. M. Goodgame and I. Jeeves, J. Chem. Soc., Dalton Trans., 880 (1978).

  10. D. L. M. Goodgame, G. A. Leach, A. C. Skapski and K. A. Woode, Inorg. Chim. Acta, 31, L375 (1978).

    Google Scholar 

  11. A. C. Skapski and K. A. Woode, Acta Crystallogr., B55, 59 (1979).

    Google Scholar 

  12. D. L. M. Goodgame, I. Jeeves and A. G. Leach, Inorg. Chim. Acta, 39, 247 (1980).

    Google Scholar 

  13. R. Battistuzzi and G. Peyronel, Can. J. Chem., 59, 591 (1981).

    Google Scholar 

  14. R. Shunmugam and D. N. Sathyanarayana, Indian J. Chem., 22A, 784 (1983); 23A, 742 (1984).

    Google Scholar 

  15. M. J. Bret, P. Castan, G. Jugie, A. Dubourg and R. Roques, J. Chem. Soc., Dalton Trans., 301 (1983).

  16. D. L. M. Goodgame, R. W. Rollins, A. M. Z. Slawin, D. J. Williams and P. W. Zard, Inorg. Chim. Acta, 120, 91 (1986).

    Google Scholar 

  17. M. D. Gutierrez, R. Lopez, M. A. Romero and J. M. Salas, Can. J. Chem., 66, 249 (1988).

    Google Scholar 

  18. B. G. Olby, S. D. Robinson, Inorg. Chim. Acta, 165, 153 (1989).

    Google Scholar 

  19. D. D. Kovala-Demertzi, P. Kykkou and I. Zakharoba, Polyhedron, 10, 1507 (1991).

    Google Scholar 

  20. S. Katigawa, Y. Naroka, M. Munakata and S. Kawata, Inorg. Chim. Acta, 197, 169 (1992).

    Google Scholar 

  21. P. Aslanidis, S. K. Hadjikakou, P. Karangiannidis, M. Gdaniec and Z. Kosturkiewicz, Polyhedron, 12, 2221 (1993).

    Google Scholar 

  22. M. Borsari, G. Battistuzzi and R. Battistuzzi, Collect. Czech. Chem. Commun., 58, 1569 (1993).

    Google Scholar 

  23. R. Lopez-Garzon, M. D. Gutierrez-Valero, M. L. Godino-Salido, B. K. Keppler and B. Nuber, J. Coord. Chem., 30, 111 (1993).

    Google Scholar 

  24. L. P. Battaglia, R. Battistuzzi, A. Bonamartini-Corradi, C. Rizzoli and P. Sgarabotto, J. Cryst. Spectrosc. Res., 23, 937 (1993).

    Google Scholar 

  25. R. Battistuzzi, Transition Met. Chem., 13, 401 (1988).

    Google Scholar 

  26. W. J. Geary, Coord. Chem. Rev., 7, 81 (1971).

    Google Scholar 

  27. R. C. Van Landschoot, J. A. M. Van Hest and J. Reedijk, J. Inorg. Nucl. Chem., 38, 185 (1976).

    Google Scholar 

  28. W. L. Driessen, W. L. Groeneveld and F. W. Van Der Wey, Recl. Trav. Chim., Pays-Bas, 89, 353 (1970).

    Google Scholar 

  29. N. H. Beherens and D. L. M. Goodgame, Inorg. Chim. Acta, 46, 45 (1980).

    Google Scholar 

  30. M. R. Rosenthal, J. Chem. Educ., 50, 331 (1973).

    Google Scholar 

  31. R. J. H. Clark and C. S. Williams, Inorg. Chem., 3, 350 (1965).

    Google Scholar 

  32. D. M. L. Goodgame and G. A. Leach, Inorg. Chim. Acta, 25, L127 (1977).

    Google Scholar 

  33. C. W. Frank and L. B. Rogers, Inorg. Chem., 5, 615 (1966).

    Google Scholar 

  34. L. C. Nathan, J. Chem. Educ., 51, 285 (1974).

    Google Scholar 

  35. C. K. Jorgensen, J. Inorg. Nucl. Chem., 24, 1571 (1962).

    Google Scholar 

  36. R. E. Ballard, D. B. Powell and V. A. Jayasooriya, Acta Crystallogr., B30, 1111 (1974).

    Google Scholar 

  37. S. G. Rosenfield, H. P. Berends, L. Gelmini, D. W. Stephan and P. K. Mascharak, Inorg. Chem., 26, 2792 (1987).

    Google Scholar 

  38. B. A. Cartwright, D. M. L. Goodgame, J. Jeeves, P. O. Langguth and A. C. Skapski, Inorg. Chim. Acta, 24, 45 (1977).

    Google Scholar 

  39. E. S. Raper, A. M. Britton and W. Clegg, J. Chem. Soc., Dalton Trans., 3341 (1990).

  40. J. Reedijk, P. W. N. M. Van Leeuwen and W. L. Groeneveld, Recl. Trav. Chim., Pays-Bas, 87, 129 (1968).

    Google Scholar 

  41. R. A. Bailey and T. R. Peterson, Can. J. Chem., 46, 3119 (1968).

    Google Scholar 

  42. C. K. Jorgensen, Adsorption Spectra and Chemical Bonding in Complexes, Pergamon Press, London, 1962.

    Google Scholar 

  43. C. W. Schlapfer, Y. Saito and K. Nakamoto, Inorg. Chim. Acta, 6, 284 (1972).

    Google Scholar 

  44. M. C. Jain, R. K. Sharma and P. C. Jain, Gazz. Chim. Ital., 109, 601 (1979).

    Google Scholar 

  45. G. R. Brubaker and D. H. Busch, Inorg. Chem., 5, 2114 (1966).

    Google Scholar 

  46. A. B. P. Lever, Coord. Chem. Rev., 3, 119 (1968).

    Google Scholar 

  47. D. R. S. Drago, D. W. Meek, M. D. Joesten and L. Laroche, Inorg. Chem., 2, 124 (1963).

    Google Scholar 

  48. M. Pilarczyk and L. Klinszporn, Electrochim. Acta, 30, 603 (1985).

    Google Scholar 

  49. K. Ozutsumi and S. Ishiguro, J. Chem. Soc., Faraday Trans., 86, 271 (1990).

    Google Scholar 

  50. M. Pilarczyk, W. Grzybkowski and L. Klinszporn, Bull. Pol. Acad. Sci., Chem., 55, 559 (1988).

    Google Scholar 

  51. S. Ishiguro and K. Ozutsumi, Inorg. Chem., 29, 1117 (1990).

    Google Scholar 

  52. S. Ishiguro, K. Ozutsumi and H. Ohtaki, Bull. Chem. Soc. Jpn, 60, 531 (1987).

    Google Scholar 

  53. H. Ohtaki, J. Indian Chem. Soc., 69, 442 (1992).

    Google Scholar 

  54. A. J. Arvia and D. Pasadas in A. J. Bard (Ed.), Encyclopedia of Electrochemistry of the Elements, Dekker. New York, 1975, Vol. 3, p. 235.

    Google Scholar 

  55. J. J. Lingane, Chem. Rev., 29, 1 (1941).

    Google Scholar 

  56. D. D. DeFord and D. N. Hume, J. Am. Chem. Soc., 73, 5321 (1951).

    Google Scholar 

  57. H. Matsuda and Y. Ayabe, Z. Electrochem., 66, 469 (1962).

    Google Scholar 

  58. H. Irving and R. J. P. Williams, J. Chem. Soc., 3192 (1953).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author to whom all correspondence should be directed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battistuzzi, G., Borsari, M., Dallari, D. et al. Synthesis, spectroscopic, magnetic, conductometric and electro-chemical investigations of nickel(II)-1-phenyl-4,6-dimethylpyrimidine-2-thione complexes. Transition Met Chem 20, 212–219 (1995). https://doi.org/10.1007/BF00167033

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00167033

Keywords

Navigation