Skip to main content
Log in

Dynamics of the history of photosynthesis research

  • Historical Corner
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A personal view of the history of progress in photosynthesis research beginning in the seventeenth century and ending in 1992 is presented in a chart form. The 350-year time span is divided arbitrarily into seven periods by the “development junctures”, which are likened to bamboo joints. The tempo of progress is reflected in the duration of the periods, starting from over 200 years for Period I, which progressively shortens in subsequent periods. This brief introduction highlights some of the events to show the dynamic nature of the progress in photosynthesis research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Period I

  1. VanHelmont J-B (1648) Ortus Medicinae pp. 108–109 The Collected Works, edited by his son, FW van Helmont Amsterdam Reprinted, Brussels, 1966

    Google Scholar 

  2. Mariotte E (1679) Essais de physique: premier essai de la végétation des plantes; seconde essai de physique de la nature de l'air. Paris

  3. Hales S (1727) Vegetable staticks, or, an account of some statical experiments on the sap in vegetation. W. Innys, London

    Google Scholar 

  4. Bonnet C (1754) Recherches sur l'usage des feuilles dans les plantes. Gött. et Leide

  5. Priestley J (1772) Observations on different kinds of air. Phil Trans Roy Soc London 62: 147–264

    Google Scholar 

  6. Ingenhousz J (1779) Experiments upon vegetables, discovering their great power of purifying the common air in the sunshine, and of injuring it in the shade and at night. Elmsley and Payne, London

    Google Scholar 

  7. Ingenhousz J (1798) Über die Nahrung der Pflanzen und die Düngung des Bodens. Voigt, Magazin, I (Hft. 2): 97–105

  8. Senebier J (1782) Mémoires physicochimiques sur la l'influence de la lumière solaire pour modifier les êtres de trois règnes, surtout ceux du règne végétal 3 vols., Chirol, Geneva

    Google Scholar 

  9. Pelletier J and Caventou JB (1818) Notice sur la matière verte des feuilles [chlorophylle]. Ann Chim Phys IX: 194–196

    Google Scholar 

  10. Dutrochet H (1837) De la tendance des végétaux à se diriger vers la lumiere. Compt rend IV: 48–50

    Google Scholar 

  11. VonMohl H (1844) Einige Bemerkungen über den Bau der vegetabilischen Zelle. Botan Zeitung II: 273–277

    Google Scholar 

  12. Mayer JR (1845) Die organische Bewegung in ihrem Zussamenhang mit dem Stoffwechsel. Heilbronn

  13. DeSaussure NTh (1804) Recherches chimique sur la Vegetation. Nyon, Paris

  14. Liebig J (1840) Die organische Chemie in ihrer Anwendung auf Agrikultur und Physiologie. Wieweg, Braunschweig

    Google Scholar 

  15. Sachs J (1853) Über das Wachsthum der Pflanzen. Ziva pp 139–146, 229–236, 293–304, 336–343

  16. Knop W (1860) Über die Ernährung der Pflanzen durch wäßerige Lösungen bei Ausschluss des Bodens. Landw Versuchs-stat Dresden pp 65–99, 270–293

  17. Knop W (1865) Künstlischer Boden zu Vegetationsversuchen. Landw Versuchs-stat Dresden pp 341–344

  18. Boussingault JB (1864) De la végétation dans l'obscurité. Ann sci nat (Paris) I: 314–324

    Google Scholar 

  19. Sachs J (1859) Über den Auftreten der Stärke bei der Keimung ölhaltiger Saamen. Botan Zeitung XVIII: 177–183, 185–188 Sachs J (1862) Übersicht der Ergebnisse der neueren Untersuchungen über das Chlorophyll. Flora XLV: 129–137 Sachs J (1862) Über den Einfluß des Lichtes auf die Bildung des Amylums in den Chlorophyllkörnern: Botan Zeitung 20: 365–373

    Google Scholar 

  20. Pfeffer W (1874) Die Wirkung farbigen Lichtes auf die Zersetzung der Kohlensäure in Pflanzen. Würzburg, Botan Inst Arbeit 1: 1–76 Pfeffer W (1881) Pflanzenphysiologie, Ein Handbuch des Stoffwechsels und Kraftwechsels in der Pflanzen. 2 vols, Leipzig [English edition (1900–1906), translated and edited by A.J.Ewart: The Physiology of plants. A treatise upon the metabolism and sources of energy in plants. 3 vols, Oxford Pfeffer W (1892) Studien zur Energetik der Pflanzen. Math Phys Abh (Leipzig) 18: 149–276

    Google Scholar 

  21. Barnes CR (1893) On the food of green plants. Botan Gazette 18: 403 Barnes CR (1898) So-called assimilation. Botan Centrbl LXXVI p.257

    Google Scholar 

Period II

  1. Meyer A (1882) Über Chlorophyllkörner, Stärkebildner und Farbkörper. Botan Centrbl 12: 314–317

    Google Scholar 

  2. Blackman FF (1905) Optima and limiting factors. Ann Botan 19: 281–295

    Google Scholar 

  3. Willstätter R and Stoll A (1913) Untersuchungen über Chlorophyll. Justus Springer, Berlin (English translation by F.M. Schertz and A.R. Merz, Science Printing Press, Lancaster, Pennsylvania, 1928)

    Google Scholar 

  4. Engelmann ThW (1883) Bacterium Photometricum: ein Beitrag zur vergleichenden Physiologie des Licht-und Farbensinnes. Pflüger, Archiv Physiol 30: 95–124

    Google Scholar 

  5. Winogradsky S (1887) Über Schwefelbakterien. Botan Zeitung 45: 489 ff. Winogradsky S (1888) Zur Morphologie und Physiologie der Schwefelbakterien. Arthur Felix, Leipzig

  6. Engelmann ThW (1881) Neue Methode zur Untersuchung der Sauerstoffausscheidung pflanzlicher und thierischer Organismen. Botan Zeitung 39: 441–448 Engelmann ThW (1882) Über Sauerstoffausscheidung von Pflanzencellen im Mikrospectrum. Botan Zeitung 40: 419–426 Gest H (1988) Sunbeams, cucumbers and purple bacteria. Photosynth Res 19: 287–308

    Google Scholar 

  7. Molisch H (1896) Eine neue mikrochemische Reaktion auf Chlorophyll. Ber deut botan Ges 14: 16–18 Gest H (1991) The legacy of Hans Molisch (1856–1937), photosynthesis savant. Photosynth Res 30: 49–57

    Google Scholar 

  8. Willstätter R and Stoll A (1918) Untersuchungen über Assimilation der Kohlensäure. Springer, Berlin

    Google Scholar 

  9. VonBaeyer A (1864) Über die Wasserentziehung und ihre Bedeutung für das Pflanzenleben und die Gährung. Ber deut chem Ges 3: 63

    Google Scholar 

Period III

  1. Granick S (1938) Quantitative isolation of chloroplasts from higher plants. Am J Botany 25: 558–561

    Google Scholar 

  2. Warburg O (1919–1920) Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen (I and II) Biochem Z 100: 230–270; 103: 188–217

    Google Scholar 

  3. Warburg O and Negelein E (1923) Über den Einfluß der Wellenlänge auf den Energieumsatz bei der Kohlensäureassimilation. Z Physik Chem (Leipzig) 106: 191–218

    Google Scholar 

  4. Emerson R and Arnoid W (1932) A Separation of the reactions in photosynthesis by means of intermittent light. J Gen Physiol 15: 391–420 Emerson R and Arnold W (1932) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205

    Google Scholar 

  5. Fischer H and Klarer J (1926) Synthesis of porphyrins. VII. Etioporphyrin from cryptopyrrole and hemopyrrole. Ann Chem 450: 181–201

    Google Scholar 

  6. Stoll A (1936) Zusammenhänge zwischen der Chemie des Chlorophylls und seiner Funktion in der Photosynthese. Naturwissen 24:53–60

    Google Scholar 

  7. Kautsky H and Hirsch A (1931) Chlorophyllfluoreszenz und Kohlensäureassimilation. Biochem Z 274:423–434 Kautsky H and Zedlith W (1941) Fluorescence curves of chloroplast grana. Naturwissen 29:101–102 Kautsky H and Frank U (1943) Chlorophyllfluoreszenz und Kohlensäureassimilation. IX. Apparatur zur Messung rascher Lumineszenzänderung geringer Intensität. Biochem Z 315: 139–155; X Die Chlorophyllfluoreszenz von Ulva lactuca und ihre Abhängigkeit von Temperatur und Lichtintensität. ibid 315: 156–175; XI. Die Chlorophyllfluoreszenz von Ulva lactuca und ihre Abhängigkeit von Narkotica, Sauerstoff und Kohlendioxyd. ibid. 315:176–206; XII. Zusammenfassung der bisherigen Ergebnisse und ihre Bedeutung für die Kohlensäureassimilation. ibid. 315:207–232

    Google Scholar 

  8. Wurmser R (1925) Le rendement énergetique de la photosynthèse chlorophylliene. Annales de physiologie et de physicochimique biologie. 1:47–63 Wurmser R (1930) Oxydations et réductions. Les presses universitaires de France, Paris Wurmser R (1987) Letter to the editor. Photosynth Res 13:91–93

    Google Scholar 

  9. VanNiel CB (1929) Photosynthesis in bacteria. in “Contribution to Marine Biology” pp. 161–169, Stanford University Press, Stanford, California Van Niel CB (1931) On the morphology and physiology of the purple and green bacteria. Arch Mikrobiol 3:1–12 Van Niel CB (1941) The bacterial photosynthesis and their importance for the general problem of photosynthesis. Adv Enz 1:263–328 Stanier RY (1961) Photosynthetic mechanisms in bacteria and plants; a unitary concept. Bacteriolog Revs 25:1–17 Gest H (1993) History of concepts of the comparative biochemistry of oxygenic and anoxygenic photosyntheses. Photosynth Res 35:87–96

    Google Scholar 

  10. Thunberg T (1923) A new way for carbon dioxide to formaldehyde. A contribution to the theory of photosynthesis. Z physik Chem 106:305–312 Weigert F (1923) Photochemical comments regarding Thunberg's theory of photosynthesis. Z physik Chem 106:313–323

    Google Scholar 

Period IV

  1. Kausche GA and Ruska H (1940) Über die Nachweis von Molekülen der Tabakmosaikviren in den Chloroplasten virus-kranker Pflanzen. Naturwissen 28:303–304

    Google Scholar 

  2. Granick S and Porter KR (1947) Structure of the spinach chloroplasts as interpreted with the electron microscope. Am J Botany 34:545–550

    Google Scholar 

  3. Steinmann E (1952) Contribution to the structure of granular chloroplasts. Experientia 8:300–301 Steinmann E (1952) An electron microscope study of the lamellar structure of chloroplasts. Exptl Cell Res 3:367–372

    Google Scholar 

  4. Frey-Wyssling A and Steinmann E (1953) Ergebnisse der Feinbau-Analyse der Chloroplasten. Vierteljahresschr Naturf Ges Zürich 98:20–29

    Google Scholar 

  5. Emerson R and Lewis CM (1939) Factors influencing the efficiency of photosynthesis. Am J Botany 26:808–822 Emerson R and Lewis CM (1941) Carbon dioxide exchange and the measusrement of the quantum yield of photosynthesis. Am J Botany 28:789–804 Warburg O (1948) Assimilation quotient and photochemical yield. Am J Botany 35:194–204 Nishimura MS, Whittingham CP and Emerson R (1951) The maximum efficiency of photosynthesis. A critique of certain manometric methods used for measuring rates of photosynthesis. Symp Exptl Biol 5:176–210 Rabinowitch E (1951) Photosynthesis and related processes, Vol II Pt 1. Maximum quantum yield of photosynthesis. pp 1083–1141; (1956) Addendum, Vol II Pt 2 pp 1940–1978 John Wiley-Interscience, New York Emerson R and Chalmers RV (1955) Transient changes in cellular gas exchange and the problem of maximum efficiency of photosynthesis. Plant Physiol 30:504–529 Emerson R (1958) The quantum yield of photosynthesis. Annu Rev Plant Physiol 9:1–24 Govindjee R, Rabinowitch E and Govindjee (1968) Maximum quantum yield and action spectra of photosynthesis and fluorescence. Biochim Biophys Acta 162:539–544

    Google Scholar 

  6. Emerson R and Lewis CM (1943) The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light. Am J Botany 30:165–178

    Google Scholar 

  7. Arnold W and Kohn HI (1934) The chlorophyll unit in photosynthesis. J Gen Physiol 18:109–112

    Google Scholar 

  8. Gaffron H and Wohl K (1936) Zur Theorie der Assimilation. Naturwissen 24:81–90; 103–107 Wohl K (1937) Zur Theorie der Assimilation. I. Theory of the assimilation unit. Z Physik Chem Abt B 37:105–121; II. The assimilation theory of Frank and Herzfeld. ibid 122–147; III. The dark reaction of asimilation. The Blackman reaction. ibid 169–185; IV. Mechanism of the assimilation unit. ibid 186–208; V. General summary. ibid 209–230 Wohl K (1941) Mechanism of photosynthesis in purple bacteria and green plants. New Phytologist 40:34–55

    Google Scholar 

  9. Thomas JB, Blaauw OH and Duysens LNM (1953) On the relationship between size and photochemical activity of fragments of spinach grana. Biochim Biophys Acta 10:230–239

    Google Scholar 

  10. Duysens LNM (1952) Transfer of excitation energy in photosynthesis. Doctoral thesis, State University, Utrecht, the Netherlands

  11. Smith EL (1938) Solutions of chlorophyll-protein compounds (phyllochlorins) extracted from spinach. Science 88:170–171 Smith EL (1941) The chlorophyll-protein compound of green leaf. J Gen Physiol 24:565–585

    Google Scholar 

  12. Takashima S (1952) Chlorophyll-protein obtained in crystals. Nature 69:82–183

    Google Scholar 

  13. Jacobs EE, Vatter AE and Holt AS (1953) Crystalline chlorophyll and bacteriochlorophyll. J Chem Phys 21:2246–2247

    Google Scholar 

  14. McAlister ED and Myers J (1940) The time course of photosynthesis and fluorescence observed simultaneously Smithsonian Inst Pubs Misc Coll 99, #6

  15. Förster Th (1948) Intermolecular energy transference and fluorescence. Ann Physik 2:55–75

    Google Scholar 

  16. Dutton HJ, Manning WM and Duggar BB (1943) Chlorophyll fluorescence and energy transfer in diatom Nitzschia closterium. J Gen Physiol 47:308–313

    Google Scholar 

  17. French CS and Young VK (1952) The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll. J Gen Physiol 35:873–890

    Google Scholar 

  18. Strehler BL and Arnold W (1951) Light production by green plants. J Gen Physiol 34:809–820 Arnold WA (1991) Experiments. Photosynth Res 27:73–82

    Google Scholar 

  19. Pirson A (1937) A study of the nutrition and metabolism of Fontinalis and Chlorella. Z Bot 31:193–267

    Google Scholar 

  20. Gaffron H (1940) Carbon dioxide reduction with molecular hydrogen in green algae. Am J Botany 27:273–283

    Google Scholar 

  21. Ruben S, Randall M, Kamen MD and Hyde JL (1941) Heavy oxygen (18 O) as tracer in the study of photosynthesis. J Am Chem Soc 63:877–878

    Google Scholar 

  22. Lipmann F (1941) Metabolic generation and utilization of phosphate bond energy. Adv Enz 1:99–162 Lipmann F (1971) Wondering of a biochemist. Wiley-Interscience, New York

    Google Scholar 

  23. Lundegårdh H (1946) Transport of water and salts through plant tissues. Nature 157:575–578 Lundegårdh H (1947) Mechanism of absorption, transport, accumulation, and secretion of ions. Annu Rev Biochem 16:503–528

    Google Scholar 

  24. Hill R (1937) Oxygen evolved by isolated chloroplasts. Nature 139:181–182 Hill R (1939) Oxygen evolution by isolated chloroplasts. Proc Roy Soc ser B 127:192–210

    Google Scholar 

  25. Hill R and Scarisbrick R (1951) The hematin compounds of leaves. New Phytologist 50:98–111 Davenport HE and Hill R (1952) The preparation and some properties of cytochrome f. Proc Roy Soc ser B 139:327–345

    Google Scholar 

  26. Mehler A (1951) Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of O 2 and other Hill reagents. Arch Biochem Biophys. 33:65–77; II. Stimulation and inhibition of the reaction with molecular oxygen. ibid 34:339–351

    Google Scholar 

  27. Vishniac W and Ochoa S (1951) Photochemical reduction of pyridine nucleotides by spinach grana and coupled carbon dioxide fixation. Nature 167:768–769

    Google Scholar 

  28. Tolmach LJ (1951) Effects of triphosphopyridine nucleotide upon oxygen evolution and carbon dioxide fixation by illuminated chloroplasts. Nature 167:946–948

    Google Scholar 

  29. Arnon DI (1951) Extracellular photosynthetic reactions. Nature 167:1008–1010

    Google Scholar 

  30. Ruben S, Kamen MD, Hassid WZ and DeVault D (1939) Photosynthesis with radio-carbon. Science 90:570–571 Ruben S, Kamen MD and Hassid WZ (1940) Photosynthesis with radioactive carbon. II. Chemical properties of the intermediates. J Am Chem Soc 62:3443–3450 Kamen MD (1989) Onward into a fabulous half-century. Photosynth Res 21:137–144

    Google Scholar 

  31. Calvin M and Benson AA (1948) Path of carbon in photosynthesis. Science 107:476–480

    Google Scholar 

  32. Gaffron H, Fager EW and Rosenberg JL (1951) Intermediates in photosynthesis: Formation and transformation of phosphoglyceric acid. Symp Exptl Biol 5:262–283 Gaffron H and Fager EW (1951) The kinetics and chemistry of photosynthesis. Annu Rev Plant Physiol 2:87–114

    Google Scholar 

  33. Jensen RG and Bassham JA (1966) Photosynthesis by isolated chloroplasts. Proc Nat Acad Sci USA 56:1095–1101

    Google Scholar 

Period V

  1. Ris H and Plout W (1962) Ultrastructure of DNA containing areas in chloroplasts of Chlamydomonas. J Cell Biol 13:383–391

    Google Scholar 

  2. Chun EHL, VaughanJr MH and Rich A (1963) The isolation and characterization of DNA associated with chloroplast preparations. J Mol Biol 7:130–141

    Google Scholar 

  3. Sager R and Ishida MR (1963) Chloroplast DNA in Chlamydomonas. Proc Nat Acad Sci USA 50:725–730

    Google Scholar 

  4. Brenner S and Horne RW (1959) A negative staining method for high resolution electron microscopy of virus. Biochim Biophys Acta 34:103–110

    Google Scholar 

  5. Moor H, Mühlethaler K, Waldner H and Frey-Wyssling A (1961) A new freezing ultramicrotome. J Biophys Biochem Cytol 10:1–13

    Google Scholar 

  6. Menke W (1962) Structure and chemistry of plastids. Annu Rev Plant Physiol 13:27–44 Menke W (1965) Feinbau und Entwicklung der Plastiden. Ber dtsch Bot Ges 77:340–354 Menke W (1972) 40 Jahre Versuche zur Aufklärung der molekularen Struktur der Chloroplasten. Jahrbuch der Max-Planck-Gesselschaft zur Förderung der Wissenschaften E.V. pp. 132–155 Menke W (1990) Retrospective of a botanist. Photosynth Res 25:77–82

    Google Scholar 

  7. Emerson R, Chalmers RV and Cederstrand C (1957) Some factors influencing the long-wave limit of photosynthesis. Proc Nat Acad Sci USA 43:133–143 Emerson R and Rabinowitch E (1960) Red drop and rôle of auxiliary pigments in photosynthesis. Plant Physiol 35:477–485 Govindjee and Rabinowitch E (1960) Two forms of chlorophyll a in vivo with distinct photochemical functions. Science 132:355–356 Govindjee R, Rabinowitch E and Govindjee (1968) Maximum quantum yield and action spectra of photosynthesis and fluorescence. Biochim Biophys Acta 162:539–544

    Google Scholar 

  8. Blinks LR (1957) Chromatic transients in photosynthesis of red algae. Research in Photosynthesis (H Gaffron et al, eds) pp. 444–449. Interscience Publishers

  9. Hill R and Bendall F (1960) Function of the two cytochrome components in chloroplasts. A working hypothesis. Nature 186: 136–137

    Google Scholar 

  10. Wessels JSC (1962) Separation of the two photochemical systems of photosynthesis by digitonin fragmentation of spinach chloroplasts. Biochim Biophys Acta 65:561–564

    Google Scholar 

  11. Boardman NK and Anderson JM (1964) Isolation from spinach chloroplasts containing different proportions of chlorophyll a and chlorophyll b and their possible rôle in the light reactions of photosynthesis. Nature 203:166–167

    Google Scholar 

  12. Vernon LP and Shaw ER (1965) Photochemical activities of spinach chloroplasts following treatment with the detergent Triton X-100. Plant Physiol 40:1269–1277 Vernon LP, Shaw ER and Ke B (1966) A photochemically active particle derived from chloroplasts by the action of the detergent Triton X-100. J Biol Chem 241:4101–4109

    Google Scholar 

  13. Thornber JP (1969) Comparison of a Chl a-protein complex from a blue-green alga with chlorophyll-protein complexes obtained from green bacteria and higher plants. Biochim Biophys Acta 172:230–241 Dietrich WE and Thornber JP (1971) The P700 chlorophyll a-protein of a blue-green alga. Biochim Biophys Acta 245:482–493 Shiozawa JA, Alberte RS and Thornber JP (1974) The P700-chlorophyll a protein. Isolation and some characteristics of the complex in higher plants. Arch Biochem Biophys 165:388–397

    Google Scholar 

  14. Kok B and Hoch G (1961) Spectral changes in photosynthesis. in “Light and life” (McElroy WD and Glass B, eds) pp. 397–416. Johns Hopkins Press, Baltimore

    Google Scholar 

  15. Duysens LNM, Amesz J and Kamp BM (1961) Two photochemical systems in photosynthesis. Biochim Biophys Acta 190:188–190 Duysens LNM (1988) The discovery of the two photosynthetic systems: a personal account. Photosynth Res 21:61–79

    Google Scholar 

  16. Witt HT, Müller A and Rumberg B (1961) Experimental evidence for the mechanism of photosynthesis. Nature 191:194–195 Witt HT, Müller A and Rumberg B (1961) Oxidized cytochrome and chlorophyll in photosynthesis. Nature 192:967–969

    Google Scholar 

  17. Ogawa T, Obata F and Shibata K (1966) Two pigment proteins in spinach chloroplasts. Biochim Biophys Acta 112: 223–234

    Google Scholar 

  18. Thornber JP, Smith CA and Bailey JL (1966) Partial characterization of two chlorophyll-protein complexes isolated from spinach-beet chloroplasts. Biochem J 100:14–15

    Google Scholar 

  19. Olson JM, Filmer D, Radloff R, Romano C and Sybesma C (1963) The protein-chlorophyll-770 complex from green bacteria, in “Bacterial photosynthesis” (Gest H, San Pietro A and Vernon LP, eds) pp. 423–431. Antioch Press, Yellow Springs, OH

    Google Scholar 

  20. Sogo PB, Pon NG and Calvin M (1957) Photo spin resonance in chlorophyll-containing plant material. Proc Nat Acad Sci USA 43:287–293 Sogo PG, Jost M and Calvin M (1959) Evidence for free radical production in living cells exposed to ionizing radiation. Radiation Res 1:511–518

    Google Scholar 

  21. Arnold W and Clayton RK (1960) The first step in photosynthesis: Evidence for its electronic nature. Proc Nat Acad Sci USA 46:769–776

    Google Scholar 

  22. Woodward RB, Ayer WA, Beaton JM, Bickelhaupt F, Bonnett R, Buchschacher P, Closs GL, Dutler H, Hannah J, Hauck FP, Itô L, Angemann A, LeGoff E, Leimgruber W, Lwowski W, Sauer J, Valenta Z and Volz H (1960) The total synthesis of chlorophyll. J Am Chem Soc 82:3800–3802 Woodward RB (1960) Total synthesis of chlorophylls. Angew Chem 72:651–662

    Google Scholar 

  23. Yakushiji E, Uchino K, Sigimura Y, Shiratori I and Takamiya F (1963) Isolation of water-soluble chlorophyll protein from the leaves of Chenopodium album. Biochim Biophys Acta 75:293–298

    Google Scholar 

  24. Krasnovsky AA and Voynovskaya KK (1951) Reversible photochemical reduction and oxidation of bacteriochlorophyll and bacteriopheophytin. Doklady Akad Nauk SSSR 81:879–882 Krasnovsky AA (1992) Excited chlorophyll and related problems. Photosynth Res 33:173–193

    Google Scholar 

  25. Evstigneev VB and Gavrilova VA (1954) Photoreduction of pheophytins a and b. Doklady Akad Nauk SSSR 96:1201–1204

    Google Scholar 

  26. Albers VM and Knorr HV (1937) Forms of chlorophyll a in living plants. Plant Physiol 12:833–843

    Google Scholar 

  27. French CS and Huang HS (1957) The shape of the red absorption band of chlorophyll in live cells. Carnegie Institution Washington Year Book No 56, pp. 266–268 French CS (1958) Various forms of chlorophyll a in plants. Brokhaven Symp Biol 11:65–73 French CS and Elliott RF (1958) The absorption spectra of chlorophylls in various algae. Carnegie Institution Washington Year Book No 57, pp. 278–286 French CS (1957) Derivative spectrophotometry. Symp Instrumentation and control, Instr soc Am, Berkely, CA, USA French CS (1960) The chlorophylls in vivo and in vitro, in “Encycl Plant Physiol” (Ruhland W, ed) 5:257–297 Springer Brown JS and French CS (1961) The long wavelength forms of Chl a. Biophys J 1:539–550 Smith JHC and French CS (1963) The major and accessory pigments in photosynthesis. Annu Rev Plant Physiol 14:181–224

  28. Litvin FF and Krasnovsky AA (1957) An investigation of the intermediate stages of formation of chlorophyll in etiolated leaves based on measurement of the fluorescence spectra. Doklady Akademie Nauk SSSR 117:106–109

    Google Scholar 

  29. Murata N, Nishimura M and Takamiya A (1966) Fluorescence of chlorophyll in photosynthetic systems. I. Analysis of weak light effect in isolated chloroplasts. Biochim Biophys Acta 112:213–222; II. Induction of fluorescence in isolated chloroplasts, ibid 120:23–33; III. Emission and action spectrum of fluorescence. Three emission bands of Chl a and the energy transfer between pigment systems. ibid 126: 234–243

    Google Scholar 

  30. Cho F, Spencer J and Govindjee (1966) Emission spectra of Chlorella at very low temperatures (-269° to-196°) Biochim Biophys Acta 126:174–176 Cho F and Govindjee (1970) Low-temperature (4–77° K) spectroscopy of Chlorella: temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216:139–150 Cho F and Govindjee (1970) Low-temperature (4–77° K) spectroscopy of Anacystis: temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216:151–161

    Google Scholar 

  31. Witt HT (1955) Kurzzeitige Absorptionsänderungen beim Primärprozeß der Photosynthese. Naturwissen 42:72–73 Witt HT (1955) The primary processes of photosynthesis. Z Elektrochem 59:981–986 Rüppel H and Witt HT (1969) Measurement of fast reactions by single and repetitive excitation with pulses of electromagnetic radiation. Methods Enzym 16:316–380 (Kustin K, ed) Acad Press, New York Witt HT (1991) Functional mechanism of water splitting photosynthesis. Photosynth Res 29:55–77

    Google Scholar 

  32. Kok B (1959) Light-induced absorption changes in photosynthetic organisms. II. A split-beam difference spectrophotometer. Plant Physiol 34:184–192

    Google Scholar 

  33. Kok B (1956) On the reversible absorption change at 705 mμ in photosynthetic organisms. Biochim Biophys Acta 22:399–401 Kok B (1957) Light-induced absorption changes in photosynthetic organisms. Acta Botan Neerl 6:316–336 Kok B (1961) Partial purification and determination of the oxidation reduction potential of the photosynthetic chlorophyll complex absorbing at 700 mμ. Biochim Biophys Acta 48:527–533

    Google Scholar 

  34. Commoner B, Heise JJ and Townsend J (1956) Light-induced paramagnetism in chloroplasts. Proc Nat Acad Sci USA 42:710–718

    Google Scholar 

  35. Allen FL and Franck J (1955) Photosynthetic oxygen evolution by flashes of light. Arch Biochem Biophys 58:124–143

    Google Scholar 

  36. Whittingham CP and Brown AH (1958) Oxygen evolution from algae illuminated by short and long flashes. J Exptl Botany 9:311–319

    Google Scholar 

  37. Kessler E, Arthur W and Brugger JE (1957) Influence of manganese on delayed light emission, fluorescence, photo-reduction, and photosynthesis in algae. Arch Biochem Biophys 71:326–335

    Google Scholar 

  38. Warburg O and Krippahl G (1958) Hill Reaktionen. Z Naturforsch 13b:509–514 Warburg O and Krippahl (1960) Notwendigkeit der Kohlensäure für die Chinon und Ferricyanid-Reaktionen in grünen Grana. Z Naturforsch 15b:367–369 Blubaugh DJ and Govindjee (1988) The molecular mechanism of the bicarbonate effect at the plastoquinone reductase site of photosynthesis. Photosynth Res 19:85–128

    Google Scholar 

  39. Morton RA (1958) Ubiquinone. Nature 182:1764–1767 Morton RA (1965) Quinones as biological catalysts. Endeavour 24:81–86

    Google Scholar 

  40. Green DE, Hatefi Y and Fechner WF (1959) On the rôle of coenzyme Q in electron transport. Biochem Biophys Res Commun 1:45–48

    Google Scholar 

  41. Crane FL (1959) Isolation of two quinones with coenzyme Q activity from alfalfa, Plant Physiol 34:546–551

    Google Scholar 

  42. Govindjee, Ichimura S, Cederstrand C and Rabinowitch E (1960) Effect of combining far-red light with shorter wave light on the excitation of fluorescence in Chlorella. Arch Biochem Biophys 89:322–323

    Google Scholar 

  43. Duysens LNM and Sweers HE (1963) Mechanism of two photochemical reactions in algae as studied by means of fluorescence, in “Studies on Microalgae and Photosynthetic bacteria” pp. 353–372. Special issue of Plant Cell Physiology, Soc Plant Physiologists, University of Tokyo Press, Tokyo

    Google Scholar 

  44. Frenkel AW (1954) Light-induced phosphorylation by cell-free preparations of photosynthetic bacteria. J Am Chem Soc 76:5568–5569 Frenkel AW (1993) Recollections. Photosynth Res, 35:103–116

    Google Scholar 

  45. Arnon DI, Allen MB and Whatley FR (1954) Photosynthesis by isolated chloroplasts. Nature 174:394–396 Arnon DI, Whatley FR and Allen MB (1957) Triphosphopyridine nucleotide as a catalyst of photosynthetic phosphorylation. Nature 180:182–185 Arnon DI (1984) The discovery of photosynthetic phosphorylation. TIBS 9:258–262

    Google Scholar 

  46. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191: 144–148 Mitchell P (1961) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Glynn Res, Bodmin, Cornwall, England.

    Google Scholar 

  47. Jagendorf AT and Uribe E (1966) ATP formation caused by acid-base transition of spinach chloroplasts. Proc Nat Acad Sci USA 55: 170–177

    Google Scholar 

  48. Katoh S (1960) A new copper protein from Chlorella Ellipsoidea. Nature, 186:533–534

    Google Scholar 

  49. Duysens LNM (1955) Rôle of cytochrome and pyridine-nucleotide in algal photosynthesis. Science 121:210–213

    Google Scholar 

  50. Chance B and Nishimura M (1960) On the mechanism of chlorophyll-cytochrome interaction: The temperature insensitivity of light-induced cytochrome oxidation in Chromatium. Proc Nat Acad Sci USA 46: 19–24

    Google Scholar 

  51. DeVault D and Chance B (1966) Studies of photosynthesis using a pulsed laser: Temperature dependency of cytochrome oxidation rate in Chromatium vinosum. Evidence for tunneling. Biophys J 6: 825–847 DeVault D (1989) Tunneling enters biology. Photosynth Res 22:5–10

    Google Scholar 

  52. Davenport HE, Hill R and Whatley FR (1952) A natural factor catalyzing reduction of methemoglobin by isolated chloroplasts. Proc Roy Soc Ser. B 139:346–358

    Google Scholar 

  53. San Pietro A and Lang HM (1956) Accumulation of reduced pyridine nucleotide by illuminated grana. Science 124: 118 San Pietro A and Lang HM (1958) Photosynthetic pyridine nucleotide reductase. I. Purification and properties of the enzyme from spinach. J Biol Chem 231:211–229

    Google Scholar 

  54. Mortenson LE, Valentine RC and Carnahan JE (1962) An electron transport factor from Clostridium pasteurianum. Biochem Biophys Res Commun 7: 448–452

    Google Scholar 

  55. Tagawa K and Arnon DI (1962) Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature 195: 537–543 Tagawa K and Arnon DI (1968) Oxidation-reduction potentials and stoichiometry of electron transfer in ferredoxin. Biochim Biophys Acta 153:602–613

    Google Scholar 

  56. Shin M, Tagawa K and Arnon DI (1963) Crystallization of ferredoxin-TPN reductase and its role in the photosynthetic apparatus of chloroplasts. Biochem Z 338:84–96

    Google Scholar 

  57. Calvin M and Bassham JA (1962) The path of cabon in photosynthesis. WA Benjamin Inc, NY Calvin M (1989) Forty years of photosynthesis and related activities. Photosynth Res 21:3–36

    Google Scholar 

  58. Pedersen TA, Kirk M and Bassham JA (1966) Light-dark transients in levels of intermediate compounds during photosynthesis in air-adapted Chlorella. Physiol Plant 19: 219–231

    Google Scholar 

  59. Decker JP (1955) A rapid postillumination deceleration of respiration in green leaves. Plant Physiol 30: 82–84

    Google Scholar 

  60. Kortschak HP Hartt CE and Burr GO (1965) Carbon dioxide fixation in sugarcane leaves. Plant Physiol 40: 209–213

    Google Scholar 

  61. Hatch MD and Slack CR (1966) Photosynthesis by sugarcane leaves, A new carboxylation reaction and the pathway of sugar formation. Biochem J 101: 103–111 Hatch MD Slack CR and Johnson HS (1967) Further studies on a new pathway of photosynthetic carbon dioxide fixation in sugar-cane and its occurrence in other plant species. Biochem J 102:417–422 Hatch MD (1992) I can't believe my luck. Photosynth Res 33:1–14

    Google Scholar 

Period VI

  1. Kung SD, Thornber JP and Wildman SG (1972) Nuclear DNA codes for the photosystem II chlorophyll-protein of chloroplast membranes. FEBS Lett 24:185–188

    Google Scholar 

  2. Bedbrook JR, Link G, Coen DM, Bogorad L and Rich A (1978) Maize plastid gene expressed during photoregulated development. Proc Nat Acad Sci USA 75:3060–3064

    Google Scholar 

  3. Zurawski G, Bohnert HJ, Whitfield PR and Bottomley W (1982) Nucleotide sequence of the gene for the M r 32,000 thylakoid membrane protein from Spinacia olercea and Nicotiana debnevi predicts a totally conserved translational product of Mr 38,950. Proc Nat Acad Sci USA 79:7699–7703

    Google Scholar 

  4. McIntosh L Poulson C and Bogorad L (1980) Chloroplast gene sequence for the large subunit of ribulose bisphosphatecarboxylase of maize. Nature 288:556–559

    Google Scholar 

  5. Miller KR and Staehelin LA (1976) Analysis of the thylakoid outer surface: Coupling factor is limited to unstacked membrane regions. J Cell Biol 68:30–47

    Google Scholar 

  6. Staehelin LA, Armond PA and Miller KR (1977) Chloroplast membrane organization at the supramolecular level and its functional implications. Brookhaven Symp Biol 28:278–315

    Google Scholar 

  7. Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593:427–440 Anderson JM and Andersson B (1982) The architecture of photosynthetic membranes: The lateral and transverse organization. Trends Biochem Sci 7:288–292

    Google Scholar 

  8. Huzisige H, Usiyama H, Kikuti T and Azi T (1969) Purification and properties of the photoactive particles corresponding to photosystem II. Plant Cell Physiol 10:441–455

    Google Scholar 

  9. Briantais JM (1969) Reestablishment of a link between two particles isolated by Triton X-100. Progr Photosyn Res, Proc Intern Congr (1969) 1:174–178. Verlag C. Lichtenstern, Munich Ke B and Shaw ER (1972) Reconstitution of photosystems I and II using fragments fractionated from spinach chloroplasts by Triton treatment. Biochim Biophys Acta 275:192–198 Lam E and Malkin R (1982) Reconstitution of the chloroplast noncyclic electron transport pathway from water to NADP with three integral protein complexes. Proc Nat Acad Sci USA 79:5494–5498

    Google Scholar 

  10. Huzisige H and Yamamoto Y (1972) Analysis of photosystem II using particle II preparation. I. Experimental evidence supporting the idea of involvement of two light reactions in photosystem II of green plant photosynthesis. Plant Cell Physiol 13:477–491; (1973) II. Action spectra for Hill activities and fluorescence properties of variously-treated particle II preparations. ibid 14:953–963 Huzisige H and Takimoto N (1974) Analysis of photosystem II using particle II preparation. III. Roles of cytochrome b559 with different redox potentials and plastocyanin in the photosynthetic electron transport system. Plant Cell Physiol 15:1099–1113

    Google Scholar 

  11. Satoh Ki and Butler WL (1978) Low temperature spectral properties of subchloroplast fractions purified from spinach. Plant Physiol 61:373–379

    Google Scholar 

  12. Stewart AC and Bendall D (1979) Preparation of an active, oxygen-evolving photosystem-II particle from a blue-green alga. FEBS Lett 107:308–312 Ke B, Inoue H, Babcock GT, Fang ZX and Dolan E (1982) Optical and EPR characterization of oxygen-evolving system-II subchloroplast fragments isolated from the thermophilic blue-green alga Phormidium laminosum. Biochim Biophys Acta 682:297–306

    Google Scholar 

  13. Clement-Metral JD and Gantt E (1983) Active oxygenevolving photosystem-II phycobilisome particle from Porphyridium cruentum. Advances in Photosynthesis Research, 6th Intern Congr Photosynthesis vol 1: pp 453–456

    Google Scholar 

  14. Melis A and Homann PH (1975) Kinetic analysis of the fluorescence induction in 3-(3,4-dichlorophenyl)-1,1-dimethylurea poisoned chloroplasts. Photochem Photobiol 21:431–437 Melis A and Homann PH (1976) Heterogeneity of the photochemical centers in system II of chloroplasts. Photochem Photobiol 23:343–350

    Google Scholar 

  15. Gantt E (1969) Properties and ultrastructure of phycoerythrin from Porphyridium cruentum. Plant Physiol. 44:1629–1638

    Google Scholar 

  16. Thornber JP (1971) Chlorophyll proteins: Light-harvesting and reaction center components of plants. Annu Rev Plant Physiol 26:127–158

    Google Scholar 

  17. Fenna RE and Mathews BW (1976) Structure of a bacteriochlorophyll a-protein from Prosthecochloris aestuarii. Brookhaven Symp Biol 28:170–182 Mathews BW and Fenna RE (1980) Structure of a green bacteriochlorophyll protein. Accts Chem Res 13:309–317 Tronrud DE, Schmid MF and Mathews BW (1986) Structure and amino acid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii at 1.9 Å resolution. J Mol Biol 188:443–454

    Google Scholar 

  18. Staehelin LA, Golecki JR, Fuller RC and Drews G (1978) Visualization of the supramolecular architecture of chlorosome (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119: 269–277 Sprague SG, Staehelin LA, DiBartolomeis MJ and Fuller RC (1980) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147: 1021–1031 Feick RG and Fuller RC (1984) Topography of the photosynthetic appraratus of Chloroflexus aurantiacus. Biochemistry 23:3693–3700

    Google Scholar 

  19. Reed DW and Clayton RK (1969) Isolation of a reaction center fraction from Rhodopseudomonas sphaeroides. Biochem Biophys Res Commun 30:471–475 Clayton RK (1963) Toward the isolation of a photochemical reaction center in Rhodopseudomonas spheroides. Biochim Biopys Acta 75:212–223 Clayton RK (1988) Memories of many lives. Photosynth Res 19:205–224 Gingras G and Jolchine G (1969) Isolation of a P870-enriched particle from Rhodospirillum rubrum. Progr Photosynth Res (Tübingen) 1:209–216 Feher G (1971) Some physical and chemical properties of a bacterial reaction-center particle and its primary photochemical reactants. Photochem Photobiol 14:373–387

    Google Scholar 

  20. Okamura MY, Steiner LA and Feher G (1974) Characterization of reaction centers from photosynthetic bacteria. I. Subunit structure of the protein mediating the primary photochemicstry in Rhodopseudomas sphaeroides R-26. Biochemistry 13:1394–1403 Steiner LA, Okamura MY, Lopes LA, Moskowitz E and Feher G (1971) Characterization of reaction centers from photosynthetic bacteria. II. Amino acid composition of the reaction center protein and its subunits in Rhodopseudomonas sphaeroides R-26. Biochemistry 14:1403–1410

    Google Scholar 

  21. Dutton PL, Kaufmann KJ, Chance B and Rentzepis PM (1975) Picosecond kinetics of the 1250 nm band of the Rps. spheroides reaction center: The nature of the primary photochemical intermediate state. FEBS Lett 60 275–280

    Google Scholar 

  22. Fajer J, Brune DC, Davis MS, Forman A and Spaulding LD (1975) Primary charge separation in bacterial photosynthesis: oxidized bacteriochlorophylls and reduced pheophytin. Proc Nat Acad Sci USA 72:4956–4960

    Google Scholar 

  23. Rockley MG, Windsor MW, Cogdell RJ and Parson WW (1975) Picosecond detection of an intermediate in the photochemical reaction of bacterial photosynthesis. Proc Nat Acad Sci USA 72:2251–2255

    Google Scholar 

  24. Shuvalov VA and Klimov VV (1976) The primary photoreaction in the complex cytochrome-P890-P760 (bacteriopheophytin-760) of Chromatium minutissimum at low redox potentials. Biochim Biophys Acta 440:587–599

    Google Scholar 

  25. VanGrondelle R, Romijn JC and Holmes NG (1976) Photoreduction of the long-wavelength bacteriopheophytin in reaction centers and chromatophores of the photosynthetic bacterium Chromatium vinosum. FEBS Lett 72:187–192

    Google Scholar 

  26. Leigh JS and Dutton PL (1972) The primary electron acceptor in photosynthesis. Biochem Biophys Res Commun 46:414–421

    Google Scholar 

  27. Feher G, Isaacson RA, McElroy JD, Ackerson LC and Okamura MY (1974) On the question of the primary acceptor in bacterial photosynthesis: Manganese substitution for iron in reaction centers of Rhodopseudomonas sphaeroides R-26. Biochim Biophys Acta 368:135–139

    Google Scholar 

  28. Döring G, Renger G, Vater J and Witt HT (1969) Properties of the photoactive chlorophyll a 11 in photosynthesis. Z Naturforsch 24b:1139–1143

    Google Scholar 

  29. Stiehl HH and Witt HT (1968) Die kurzzeitigen ultravioletten Differenzspektren bei der Photosynthese. Z Naturforsch 23b:220–224 Stiehl HH and Witt HT (1969) Quantitative treatment of the function of plastoquinone in photosynthesis. Z Naturforsch 24b:1588–1598

    Google Scholar 

  30. Butler WL (1972) On the primary nature of fluorescence yield changes associated with photosynthesis. Proc Nat Acad Sci USA 69:3420–3422

    Google Scholar 

  31. Mauzerall D (1972) Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen. Proc Nat Acad Sci USA 69:1358–1362 Sonneveld A, Rademaker H and Duysens LNM (1979) Chlorophyll fluorescence as a monitor of nanosecond reduction of the photooxidized P680 + of photosystem II. Biochim Biophys Acta 548:536–551

    Google Scholar 

  32. Klimov VV, Klevanik AV, Shuvalov VA, and Krasnovsky AA (1977) Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett 82:183–186

    Google Scholar 

  33. Klimov VV, Dolan E, Shaw ER and Ke B (1980) Interaction between the intermediary electron acceptor (pheophytin) and a possible plastoquinone-iron complex in photosystem-II reaction centers. Proc Nat Acad Sci USA 77:7227–7231

    Google Scholar 

  34. Norris JR, Uphaus RA, Crespi HL and Katz JJ (1971) Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis. Proc Nat Acad Sci USA 68:625–628 Shipman LL, Cotton TM, Norris JR and Katz JJ (1976) New proposal for structure of special pair chlorophyll. Proc Nat Acad Sci USA 73:1791–1794 Katz JJ (1990) Green thoughts in a green shade. Photosynth Res 26:143–160

    Google Scholar 

  35. Hiyama T and Ke B (1971) A new photosynthetic pigment, “P430”: Its possible rôle as the primary electron acceptor of photosystem I. Proc Nat Acad Sci USA 68:1010–1013 Ke B (1973) The primary electron acceptor of photosystem I. Biochim Biophys Acta 301:1–33

    Google Scholar 

  36. Malkin R and Bearden AJ (1971) Primary reactions of photosynthesis: Photoreduction of a bound chloroplast ferredoxin at low temperature as detected by EPR spectroscopy. Proc Nat Acad Sci USA 68:16–19 Ke B, Hansen RE and Beinert H (1973) Oxidation-reduction potentials of bound iron-sulfur proteins of photosystem I. Proc Nat Acad Sci USA 70:2491–2495 Evans MCW, Reeves SG and Cammack R (1974) Determination of the oxidation-reduction potential of the bound iron-sulfur proteins of the primary electron acceptor complex of photosystem I in spinach chloroplasts. FEBS Lett 49:111–114

    Google Scholar 

  37. McIntosh AR, Chu M and Bolton JR (1975) Flash photolysis electron spin resonance studies of the electron acceptor species at low temperature in photosystem I spinach chloroplast particles. Biochim Biophys Acta 276:308–314 Evans MCW, Sihra CK, Bolton JR and Cammack R (1975) Primary electron acceptor complex of photosystem I in spinach chloroplasts. Nature 256:668–670

    Google Scholar 

  38. Babcock GT and Sauer K (1975) A rapid light-induced transient in electron paramagnetic resonance signal II activated upon inhibition of photosynthetic oxygen evolution. BiochimBiophys Acta 376:315–328 Blankenship RE, Babcock GT, Warden JT and Sauer K (1975) Observation of a new EPR transient in chloroplasts that may reflect the electron donor to photosystem II at room temperature. FEBS Lett 51:287–293 Warden JT, Blankenship and Sauer K (1976) A flash photolysis ESR study of photosystem II signal II vf, the physiological donor to P680 +. Biochim Biophys Acta 423:462–478

    Google Scholar 

  39. Cheniae GM and Martin IF (1966) Studies on the function of manganese in photosynthesis. In Energy Conversion by the Photosynthetic Apparatus, Brookhaven Symp Biol #19:406–417

  40. Joliot P and Joliot A (1968) A polarographic method for detection of oxygen production and reduction of Hill reagent by isolated chloroplasts. Biochim Biophys Acta 153:625–634 Joliot P, Barbieri G and Chabaud R (1969) Un nouveau modèle des centres photochimiques du système II. Photochem Photobiol 10:309–329

    Google Scholar 

  41. Kok B, Forbush B and McGloin M (1970) Cooperation of charges in photosynthetic O 2 evolution. I. A linear four-step mechanism. Photochem Photobiol 11:457–475 Joliot P and Kok B (1975) Oxygen evolution in photosynthesis, in “Bioenergetics of Photosynthesis,” pp. 387–412 (Govindjee, ed) Acad Press, NY

    Google Scholar 

  42. Inoue Y, Ichikawa T and Shibata K (1976) Development of thermoluminescence bands during greening of wheat leaves under continuous and intermittent illumination. Photochem Photobiol 23:125–130 Demeter S and Govindjee (1989) Thermoluminescence from plants. Physiol plant 75:121–130

    Google Scholar 

  43. Yamashita T and Butler WL (1968) Photoreduction and photophosphorylation with Tris-washed chloroplasts. Plant Physiol 43:1978–1986 Yamashita T, Tsuji J and Tomita G (1971) Reactivation of the Hill reaction of Tris-washed chloroplasts. Plant Cell Physiol 12:117–126

    Google Scholar 

  44. Bouges-Bocquet B (1973) Electron transfer between the two photosystems in spinach chloroplasts. Biochim Biophys Acta 314:250–256

    Google Scholar 

  45. Velthuys BR and Amesz J (1974) Charge accumulation at the reducing side of photosystem II of photosynthesis. Biochim Biophys Acta 333:85–94

    Google Scholar 

  46. Vermeglio A (1977) Secondary electron transfer in reaction centers of Rhodopseudomonas sphaeroides. Out-of-phase periodicity of two for the formation of ubisemiquinone and fully reduced ubiquinone. Biochim Biophys Acta 459:516–524 Vermeglio A and Clayton RK (1977) Kinetics of electron transfer between the primary and the secondary electron acceptors in reaction centers from Rhodopseudomonas sphaeroides. Biochim Biphys Acta 461:159–165

    Google Scholar 

  47. Wraight CA (1977) Electron acceptors of photosynthetic bacterial reaction centers. Direct observation of oscillatory behaviour suggesting two closely equivalent ubiquinones. Biochim Biophys Acta 459:525–531 Wraight CA (1979) The rôle of quinones in bacterial photosynthesis. Photochem Photobiol 30:767–776

    Google Scholar 

  48. Wydrzynski T and Govindjee (1975) A new site of bicarbonate effect in photosystem II of photosynthesis: evidence from chlorophyll fluorescence transients in spinach chloroplasts. Biochim Biophys Acta 387:403–408 Govindjee, Pulles MPJ, Govindjee R, Van Gorkom HJ and Duysens LNM (1976) Inhibition of the reoxidation of the secondary electron acceptor of photosystem II by bicarbonate depletion. Biochim Biophys Acta 449:602–605

    Google Scholar 

  49. Okayama S, Yamamoto N, Nishikawa K and Horio T (1968) Rôles of ubiquinone-10 and rhodoquinone in photosynthetic formation of adenosine triphosphate by chromatophores from Rhodospirillum rubrum. J Biol Chem 243:2995–2999

    Google Scholar 

  50. Junge W and Witt HT (1968) On the ion-transport system of photosynthesis—Investigation on a molecular level-Z Naturforsch 23b:244–254

    Google Scholar 

  51. Jackson and Crofts A (1969) High-energy state in chromatophores from Rhodopseudomonas sphaeroides. FEBS Lett 4:185–189

    Google Scholar 

  52. Knaff DB and Arnon DI (1969) Light-induced oxidation of a chloroplast b-type cytochrome at −189°C. Proc Nat Acad Sci USA 63:956–962

    Google Scholar 

  53. Nelson N and Neumann J (1972) Isolation of a cytochrome b 6 f particle from chloroplasts. J Biol Chem 247:1817–1824 Ke B, Sugahara K and Shaw ER (1975) Further purification of “Triton Subchloroplast Fraction I” (TSF-I) particles. Isolation of a cytochrome-free high-P700 particle and a complex containing cytochrome f and b 6, plastocyanin and iron-sulfur protein(s). Biochim Biophys Acta 408:12–25

    Google Scholar 

  54. Hurt E and Hauska G (1981) A cytochrome b 6 f complex of five polypeptides with plastoquinol-plastocyanin-oxidoreductase activity from spinach chloroplasts. Eur J Biochem 117:591–599

    Google Scholar 

  55. Prince RC, Lindsay JG and Dutton PL (1975) The Rieske iron-sulfur center in mitochondrial and photosynthetic systems: E m/pH relationships. FEBS Lett 51:108–111

    Google Scholar 

  56. Malkin R and Aparicio PJ (1975) Identification of a g=1.90 high-potential iron-sulfur protein in chloroplasts. Biochem Biophys Res Commun 63:1157–1160

    Google Scholar 

  57. Mitchell P (1976) Vectorial chemistry of the molecular mechanics of chemiosmotic coupling. Power transmissions by proticity. Biochem Soc Trans 4:399–430 Mitchell P (1976) Possible molecular mechanism of the protonmotive function of cytochrome systems. J Theor biol 62:327–367

    Google Scholar 

  58. Colman PM, Freeman HC, Guss GM, Murata M, Norris VA, Ramshaw JAM and Venkatappa MP (1978) X-ray crystal structure analysis of plastocyanin at 2.7 Å resolution. Nature 272:319–324 Guss JM and Freeman HC (1983) Structure of oxidized poplar plastocyanin at 1.6 Å resolution. J Mol Biol 169:521–563 Collyer CA, Guss JM, Sugimura Y, Yoshizaki F and Freeman HC (1990) Crystal structure of plastocyanin from a green alga, Entermorpha prolifera. J Mol Bio 211:267–632

    Google Scholar 

  59. Asada K and Kiso K (1973) Initiation of aerobic oxidation of sulfite by illuminated spinach chloroplasts. Eur J Biochem 33:253–257

    Google Scholar 

  60. Buchanan BB, Kalberer PP and Arnon DI (1967) Ferredoxin-activated fructose diphosphatase in isolated chloroplasts. Biochem Biophys Res Commun 29:74–79 Schürmann P, Wolosiuk RA, Breazeale VD and Buchanan BB (1976) Two proteins function in the regulation of photosynthetic CO 2 assimilation in chloroplasts. Nature 263:257–258 Buchanan BB (1980) Thioredoxin. Annu Rev Plant Physiol 31:341–374

    Google Scholar 

  61. Holmgren A, Soderberg B-O, Eklund H and Brändén C-I (1975) Three-dimensional structure of E. coli thioredoxin-S2 to 2.8 Å resolution. Proc Nat Acad Sci USA 72:2305–23097

    Google Scholar 

  62. Kawashima N and Wildman SG (1970) Fraction I protein. Annu Rev Plant Physiol 12:325–358 Kawashima N and Wildman SG (1972) Studies on fraction I protein. IV. Mode of inheritance of primary structure in relation to whether chloroplast or nuclear DNA contain the codes for chloroplast protein. Biochim Biophys Acta 262:42–49

    Google Scholar 

  63. Ogasawara N and Miyachi S (1970) Regulation of CO 2 fixation in Chlorella by light of varied wavelength and intensities. Plant Cell Physiol 11:1–14 Hogetsu D and Miyachi S (1970) Effect of oxygen on the light enhanced dark CO 2 fixation in Chlorella cells. Plant Physiol 45:178–182 Miyachi S and Hogetsu D (1970) Effects of preillumination with light of different wavelengths on subsequent dark CO 2 fixation in Chlorella cells. Can J Bot 48:1203–1207

    Google Scholar 

  64. Bowes G, Ogren WL and Hageman RH (1971) Phosphoglycolate production catalysed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45:716–722 Laing WA, Ogren WL and Hageman RH (1975) Bicarbonate stabilization of ribulose 1,5-diphosphate carboxylase. Biochemistry 14:2269–2275

    Google Scholar 

  65. Hatch MD and Slack CR (1970) Photosynthetic CO 2 -fixation pathways. Annu Rev Plant Physiol 21:141–162

    Google Scholar 

  66. Smith B and Epstein S (1971) Two categories of 13C/12 C ratio for higher plants. Plant Physiol 47:380–384

    Google Scholar 

  67. Tolbert NE, Oeser A, Kisaki T, Hageman RH and Yamasaki RK (1968) Peroxisomes from spinach leaves containing enzymes related to glycolate metabolism. J Biol Chem 243:5179–5184 Tolbert NE (1981) Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem 50:133–157

    Google Scholar 

Period VII

  1. Fish LE, Kück U and Bogorad L (1985) Two partially homogenesous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a protein complex of photosystem I. J Biol Chem 260: 1413–1421

    Google Scholar 

  2. Lehmbeck J, Rasmussen OF, Bookjans GB, Jepsen BR, Stummann BM and Henningsen KW (1986) Sequence of two genes in pea chloroplast DNA coding for 84 and 82 kD polypeptides of the photosystem-I complex. Plant Mol Biol 7:3–10 Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H and Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchanita polymorpha chloroplast DNA. Nature 322:572–574 Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato R, Tohdoh N, Shimada H and Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049 Kirsch W, Seyer and P Herrmann RG (1987) Nucleotide sequence of the clustered genes for two P 700 chlorophyll a apoproteins of the photosystem-I reaction center and the ribosomal protein S14 of the spinach plastid chromosome. Curr Genet 10:843–855 Kück U, Choquet Y, Schneider M, Dron M and Bennoun P (1987) Structural and transcription analysis of two homologous genes for the P700 chlorophyll a-apoproteins in Chlamydomonas reinhardii: evidence for in vivo transsplicing. EMBO J 6:2185–2195 Cantrell A and Bryant DA (1987) Molecular cloning and nucleotide sequence of the psaA and psaB genes of the cyanobacterium Synechococcus sp. PCC 7002. Plant Mol Biol 9:453–468 Cushman JC, Hallick RB and Price CA (1988) The two genes for the P 700 chlorophyll a apoproteins on the Euglena gracilis chloroplast genome contain multiple introns. Curr genet 13:159–171 Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K and Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of cereals. Mol Gen Genet 217:185–194

    Google Scholar 

  3. Webber AN and Malkin R (1990) Photosystem-I reaction-center proteins contain leucine zipper motifs. A proposed role in dimer formation. FEBS Lett 264:1–4

    Google Scholar 

  4. Kössel H, Döry I, Igloi G and Maier R (1990) A leucine-zipper motif in photosystem I. Plant Mol Biol 15:497–499 Smart LB, Warren PV, Golbeck JH and McIntosh L (1993) Mutational analysis of the structure and biogenesis of the photosystem-I reaction center in the cyanobacterium Synechocystis sp. PCC 6803. Proc Nat Acad USA 90:1132–1136.

    Google Scholar 

  5. Berthold DA, Babcock GT and Yocum CF (1981) A highly resolved oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett 134:231–234 Yamamoto Y, Ueda T, Shinkai H and Nishimura M (1982) Preparation of O 2 -evolving photosystem-II subchloroplasts from spinach. Biochim Biophys Acta 679:347–350 Kuwabara T and Murata N (1982) Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the photosystem II particles of spinach chloroplasts. Plant Cell Physiol 23:533–539

    Google Scholar 

  6. Tang XS and Satoh Ki (1985) The oxygen-evolving photosystem-II core complex. FEBS Lett 179:60–64

    Google Scholar 

  7. Satoh Ka, Ohno T and Katoh S (1985) An oxygen-evolving complex with a simple subunit structure — “a water-plastoquinone-oxidoreductase” — from the thermophilic cyanobacterium, Synechococcus sp. FEBS Lett 180:326–330 Ghanotakis DF, Demetriou DM and Yocum CF (1987) Isolation and characterization of an oxygen-evolving photosystem-II reaction center preparation and a 28 kDa Chl-a binding protein. Biochim Biophys Acta 891:15–21

    Google Scholar 

  8. Nanba O and Satoh Ki (1987) Isolation of a photosystem-II reaction center containing D1 and D2 polypeptides and cytochrome b559. Proc Nat Acad Sci USA. 84:109–112 Ghanotakis DF, dePaula JC, Demetriou DM, Bowlby NR, Petersen J, Babcock GT and Yocum CF (1989) Isolation and characterization of the 47 kDa protein and the D1-D2-cytochrome b-559 complex. Biochim Biophys Acta 974:44–53 Gounaris K, Chapman DJ and Barber J (1989) Isolation and characterization of a D1/D2/cytochrome b559 complex from Synechococcus 6803. Biochim Biophys Acta 973:296–301

    Google Scholar 

  9. Melis A, Guenther GE, Morrissey PJ and Ghirardi ML (1988) Photosystem II heterogeneity in chloroplasts. In “Applications of Chlorophyll Fluorescence,” (Lichtenthaler HK, ed.) pp. 33–43. Kluwer Acad Publ, Dordrecht

    Google Scholar 

  10. Graan T and Ort DR (1986) Delection of oxygen-evolving photosystem II centers inactive in plastoquinone reduction. Biochim Biophys Acta 852:320–330 Ort DR and Whitmarsh J (1990) Inactive photosystem II centers: a resolution of discrepancies in photosystem II quantitation. Photosynth Res 23:101–104

    Google Scholar 

  11. Bennett J (1977) Phosphorylation of chloroplast membrane polypeptides. Nature 269:344–346 Bennett J (1979) Chloroplast phosphoproteins: Phosphorylation of polypeptides of the light-harvesting chlorophyll protein complex. Eur J Biochem 99:133–137 Bennett J (1980) Chloroplast phosphoproteins: Evidence for a thylakoid-bound phosphoprotein phosphatase. Eur J Biochem 104:85–89 Bennett J, Steinback K and Arntzen CJ (1980) Chloroplast phosphoproteins: Regulation of excitation energy transfer by phosphorylation of thylakoid-membrane polypeptides. Proc Nat Acad Sci USA 77:5253–5257 Allen JF, Bennett J, Steinback K and Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291:25–29

    Google Scholar 

  12. Kühlbrandt W and Wang DN (1991) Three dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature 350:130–134

    Google Scholar 

  13. Deisenhofer J, Epp O, Mikki K, Huber R and Michel H (1984) X-ray structural analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180:385–398 Deisenhofer J and Michel H (1991) High resolution structures of photosynthetic reaction centers. Annu Rev Biophys Biophys Chem 20:247–266 Chang CH, Tiede D, Tang J, Smith U, Norris J and Schiffer M (1986) Structure of Rhodopseudomonas sphaeroides reaction center. FEBS Lett 205:82–86 Norris J and Schiffer M (1990) Photosynthetic reaction centers in bacteria. Chem Eng News July 30, pp. 22–37 Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26:The cofactors. Proc Nat Acad Sci USA 84:5730–5734 Allen JP, Feher G, Yeates TO, Rees DC, Deisenhofer J, Michel H and Huber R (1986) Structure homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by x-ray diffraction. Proc Nat Acad Sci USA 83:8589–8593 Feher G, Allen JP, Okamura MY and Rees DC (1989) Structure and function of bactrial photosynthetic reaction centers. Nature 339:111–116

    Google Scholar 

  14. Witt I, Witt HT, Gerken S, Sänger W, Dekker JP and Rögner M (1987) Crystallization of reaction center I of photosynthesis. Low concentration crystallization of photoactive protein complexes from the cyanobacterium Synechococcus sp. FEBS Lett 221:260–264 Witt HT, Krauß N, Hinrichs W, Witt I, Fromme P and Saenger W (1992) Three-dimensional structure of Synechococcus sp photosystem I reaction center with a 6 Å resolution. Proc. 9th Intern Congr Photosynth I:521–528 Krauß N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson S, Witt HT and Saenger W (1993) Three-dimensional structure of system I of photosynthesis at 6 Å resolution. Nature 361:326–331

    Google Scholar 

  15. Ford RC, Picot D and Garavito RM (1987) Crystallization of the photosystem I reaction center. EMBO J 6:1581–1586 Almog O, Shoham G, Michaeli D and Nechustai R (1991) Monomeric and trimeric forms of photosystem I reaction center of Mastigocladus laminosus: Crystallization and preliminary characterization. Proc Nat Acad Sci USA 88:5312–5316

    Google Scholar 

  16. Wasielewski MR, Johnson DG, Seibert M and Govindjee (1989) Determination of the primary charge separation rate in isolated photosystem II reaction centers with 500 femtosecond time resolution. Proc Natl Acad Sci USA 86:524–528 Wasielewski MR, Johnson DG, Govindjee, Preston C and Seibert M (1989) Determination of the primary charge separation rate in photosystem II raction centers at 15 K. Photosynth Res 22:89–100

    Google Scholar 

  17. Watanabe T, Nakazato M, Mazeki H, Hongu A, Konno M, Saitoh S and Honda K (1985) Chlorophyll a epimer and pheophytin a in green leaves. Biochim Biophys Acta 807:110–117 Watanabe T, Kobayashi M, Hongu A, Nakazato M, Hiyama T and Murata N (1985) Evidence that chlorophyll a' dimer constitutes the photochemical reaction center 1 (P700) in photosynthetic apparatus. FEBS Lett 191:252–256 Watanabe T, Kobayashi M, Maeda H, Oba T, Yoshida S, van den Meent EJ and Amersz J (1992) Function of the C13 2 -epimer chlorophylls in type I photosystem reaction centers. Proc. 9th Intern Congr Photosynth III:3–10

    Google Scholar 

  18. Brettel K, Sétif P and Mathis P (1986) Flash-induced absorption changes in photosystem I at low temperature: evidence that the electron acceptor A 1 is vitamin K 1. FEBS Lett 203:220–224 Brettel K (1988) Electron transfer from A 1 to an iron-sulfur center with t 1/2 =200 ns at room temperature in photosystem I. Characterization by flash absorption spectroscopy. FEBS Lett 239:93–98

    Google Scholar 

  19. Mansfield RW and Evans MCW (1986) UV optical difference spectrum associated with the reduction of electron acceptor A 1 in photosystem I of higher plants. FEBS Lett 203:225–229

    Google Scholar 

  20. Ikegami I, Sétif and Mathis P (1987) Absorption studies of photosystem I photochemistry in the absence of vitamin K 1. Biochim Biophys Acta 894:414–422 Itoh S, Iwaki M and Ikegami I (1987) Extraction of vitamin K 1 from photosystem I particles by treatment with diethyl ether and its effects on the A 1 EPR signal and system I photochemistry. Biochim Biophys Acta 893:508–516

    Google Scholar 

  21. Biggins J and Mathis P (1988) Functional rôle of vitamin K 1 in photosystem I of the cyanobacterium Synechocystis 6803. Biochemistry 27:1494–1500

    Google Scholar 

  22. Golbeck JH and Bryant DA (1991) Photosystem I, in “Current Topics in Bioenergetics,” vol. 16, pp. 83–177. Acad Press, New York

    Google Scholar 

  23. Dismukes GC and Siderer Y (1980) Intermediates of a polynuclear manganese center involved in photosynthetic oxygen evolution. FEBS Lett 121:78–80 Dismukes GC and Siderer Y (1980) Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proc Nat Acad Sci USA 78:274–278 Hansson Ö and Andréasson L-E (1982) EPR detectable magnetically interacting manganese ions in the photosynthetic oxygen-evolving system after continuous illumination. Biochim Biophys Acta 679:261–268 Brudvig GW, Casey JL and Suer K (1983) Properties of the S 2 state associated with O 2 evolution. Biochim Biophys Acta 723:366–371

    Google Scholar 

  24. Boussac A, Zimmermann JL and Rutherford AW (1989) EPR signals for modified charge accumulation states of the oxygen-evolving enzyme in Ca 2+ -deficient photosystem II. Biochemistry 28:8984–8989

    Google Scholar 

  25. Barry BA and Babcock GT (1987) Tyrosine radicals are involved in the photosynthetic oxygen evolving system. Proc Nat Acad Sci USA 84:7099–7103 Babcock GT, Barry BA, Debus RJ, Hoganson CW, Atamian M, McIntosh L, Sithole I and Yocum CF (1989) Water oxidation in photosystem 2. From radical chemistry to multielectron chemistry. Biochemistry 28:9557–9565

    Google Scholar 

  26. Debus RJ, Barry BA, Sithole I, Babcock GT and McIntosh L(1988) Directed mutagenesis indicates that the donor to P680 + in photosystem II is tyrosine-161 of the D1 polypeptide. Biochemistry 27:9071–9074 Debus RJ, Barry BA, Babcock GT and McIntosh L (1988) Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc Nat Acad Sci USA 85:427–430

    Google Scholar 

  27. Metz JG, Nixon PJ, Rögner M, Brudvig GW and Diner BA (1989) Directed alteration of the D1 polypeptide of photosystem II: Evidence that tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron donor, P680. Biochemistry 28:6960–6969

    Google Scholar 

  28. Vermaas WFJ, Rutherford AW and Hansson Ö (1988) Site-directed mutagenesis in photosystem II of the cyanobacterium Synechocystis sp PCC 6803: Donor D is a tyrosine residue in the D2 protein. Proc Nat Acad Sci USA 85:8477–8481

    Google Scholar 

  29. Brettel K, Schlodder E and Witt HT (1984) Nanosecond reduction kinetics of photooxidized chlorophyll a II (P680) in single flashes as a probe for the electron pathway. H + -release and charge accumulation in the O 2 -evolving complex. Biochim Biophys Acta 766:403–415 Witt HT, Schlodder E, Brettel K and Saygin Ö (1986) Reaction sequences from light absorption to the cleavage of water in photosysnthesis. Ber Bunsenges Physik Chem 90:176–179

    Google Scholar 

  30. Dekker JP, vanGorkom HJ, Wensink J and Ouwehand L (1984) Absorbance difference spectra of the successive redox states of the oxygen-evolving apparatus of photosynthesis. Biochim Biophys Acta 767:1–9 Dekker JP, Plijter JJ, Ouwenhand L and Van Gorkom HJ (1984) Kinetics of manganese redox titrations in the oxygen-evolving apparatus of photosynthesis. Biochim Biophys Acta 767:176–179 Lavergne J (1991) Improved UV-visible spectra of the S-transitions in the photosynthetic oxygen-evolving system. Biochim Biophys Acta 1060:175–188

    Google Scholar 

  31. Goodin DB, Yachandra VK, Britt RD, Sauer K and Klein MP (1984) The state of manganese in the photosynthetic apparatus. 3. Light-induced changes in x-ray absorption (K-edge) energies of manganese in photosynthetic membranes. Biochim Biophys Acta 767:209–216 Yachandra VK, Guiles RD, McDermott A, Britt RD, Cole J, Dexheimer SL, Sauer K and Klein MP (1986) The state of manganese in the photosysnthetic apparatus determined by X-ray absorption spectroscopy. J de Physique, Colloque C8, supplement No. 12, pp. 1121–1128 Sauer K, Guiles RD, McDermott AE, Cole J, Yachandra VK, Zimmermann J-L, Klein MP, Dexheimer SL and Britt RD (1988) Spectroscopic studies of manganese in photosynthetic oxygen evolution. Chim Scripta 28A:87–91

    Google Scholar 

  32. DeVault D, Govindjee and Arnold W (1983) Energetics of photosynthetic glow peaks. Proc Nat Acad Sci USA 80:983–987

    Google Scholar 

  33. Velthuys BR (1981) Electron dependent competition between plastoquinone and inhibitors for binding to photosystem II. FEBS Lett 126:277–281

    Google Scholar 

  34. Wraight C (1981) Oxidation reduction physical chemistry of the acceptor quinone complex in bacterial photosynthetic reaction centers: evidence for a new model of herbicide activity. Isr J Chem 21:248–281

    Google Scholar 

  35. Gabellini N, Boywer JR, Hurt E, Melandri BA and Hauska H (1982) A cytochrome bc 1 complex with ubiquinol-cytochrome c 2 oxidoreductase activity from Rhodopseudomonas sphaeroides GA. Eur J Biochem 126:105–111

    Google Scholar 

  36. Daldal F, Davidson E and Cheng S (1987) Isolation of the structural genes for the Rieske Fe-S protein, cytochrome b and cytochrome c 1 -all components of the ubiquinol-cytochrome c 2 oxidoreductase complex of Rhodopseudomonas capsulata. J Mol Biol 195:1–12

    Google Scholar 

  37. Hauska G, Nitschke W and Herrmann RG (1988) Amino acid identities in the three redox center-carrying polypeptides of the cytochrome bc 1/b6 f complexes. J Bioenerg Biomembr 20:211–228

    Google Scholar 

  38. Davidson E, Ohnishi T, Atta-Asafo-Adjei E and Daldal F (1992) Potential ligands to the [2Fe-2S] Rieske cluster of the cytochrome bc 1 complex of Rb. capsulatus probed by site-directed mutagenesis. Biochemistry 31:3342–3351 Davidson E, Ohnishi T, Tokito M and Daldal F (1992) Rhodobacter-capsulatus mutants lacking the Rieske FeS protein form a stable cytochrome bc 1 subcomplex with an intact quinone-occupancy Q 0 site model. Biochemistry 31:3351–3358 Gray KA, Davidson E and Daldal F (1992) Mutagenesis of methionine-183 drastically affects the physicochemical properties of cytochrome c 1 of the bc 1 complex of Rhodobacter capsulatus. Biochemistry 31:11864–11873

    Google Scholar 

  39. Karplus PA, Daniels MJ and Herriott JR (1991) Atomic structure of ferredoxin-NADP + reductase: prototype for a structurally novel flavoenzyme family. Science 251:60–66

    Google Scholar 

  40. Salvucci ME, PortisJr AR and Ogren WL (1985) A soluble chloroplast protein catalyzes ribulosebisphosphate carboxylase/oxygenase in vivo. Photosynth Res 7:193–201

    Google Scholar 

  41. Schneider G, Lindquist Y, Brändén C-I and Lorimer G (1986) Three-dimensional structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum at 2.9 Å resolution. EMBO J 5:3411–3415 Schneider G, Lindqvist Y and Lindqvist T (1990) Crystallographic refinenment and structure of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 Å resolution. J Mol Biol 211:989–1008 Knight S, Andersson T and Brändén C-I (1990) Crystallographic analysis of ribulose-1,5-bisphosphate carboxylase from spinach at 2.4 Å resolution. Subunit interactions and active site. J Mol Biol 215:113–160

    Google Scholar 

  42. Farquhar GD and Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11:539–552

    Google Scholar 

  43. Adir N, Okamura MY and Feher G (1992) Crystallization of the photosystem-II reaction center. Proc. 9th Intern Congr photosynth II:195–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Professor emeritus of Okayama University, Okayama, Japan; correspondence address: Yokoi-kami, 507-66, Okayama City, Okayama, 701-11, Japan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huzisige, H., Ke, B. Dynamics of the history of photosynthesis research. Photosynth Res 38, 185–209 (1993). https://doi.org/10.1007/BF00146418

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00146418

Key words

Navigation