Skip to main content
Log in

The effect of pore-structure on hysteresis in relative permeability and capillary pressure: Pore-level modeling

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The effect of pore-structure upon two-phase relative permeability and capillary pressure of strongly-wetting systems at low capillary number is simulated. A pore-level model consisting of a network of pore-bodies interconnected by pore-throats is used to calculate scanning loops of hysteresis between primary drainage, imbibition and secondary drainage. The pore-body to pore-throat aspect ratio strongly influences the pattern of hysteresis. Changes in the patterns of hysteresis often attributed to consolidation can be understood in terms of changes in aspect ratio. Correlation between the sizes of neighboring pore-throats affects the shape of the relative permeability curves, while the width and shape of the pore-size distribution have only a minor influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adamson, A. W., 1982, Physical Chemistry of Surfaces, 4th edn, Wiley, New York.

    Google Scholar 

  • Anderson, W. G., 1986a, Wettability literature survey-Part 1: Rock/oil/brine interactions, and the effects of core handling on wettability, J. Pet. Tech. (Oct) 1125–1144.

  • Anderson, W. G., 1986b, Wettability literature survey — Part 3: Wettability measurement, J. Pet. Tech. (Nov.), 1246–1262.

  • Anderson, W. G., 1986c, Wettability literature survey — Part 4: The effects of wettability on capillary pressure, J. Pet. Tech. (Dec.).

  • Anderson, W. G., 1987, Wettability literature survey — Part 5: The effects of wettability on relative permeability, J. Pet. Tech.

  • Aziz, A. an Settari, T., 1979, Petroleum Reservoir Simulation, Applied Science Publishers, London, pp.396–401.

    Google Scholar 

  • Batycky, J. P. and McCadffrey, F. G., 1978, Low interfacial tension displacement studies, paper #78-29-26, presented at the 29th Annual Meeting of Petroleum Society of CIM, Calgary, June 13–16.

  • Bacri, J. C., Leygnac, C., and Salin, D., 1985, Evidence of capillary hyperdiffusion in two-phase fluid flows, J. Physique Lett. 46, L467–472.

    Google Scholar 

  • Brown, W. O., 1957, The mobility of connate water during a water flood, Trans. AIME 210, 190–195.

    Google Scholar 

  • Chandler, R., Koplik, J., Lerman, K., and Willemsen, J. F., 1982, Capillary displacement and percolation in porous media, J. Fluid Mech. 119, 249–267.

    Google Scholar 

  • Chatzis, I., 1980, A network approach to analyze and model capillary and transport phenomena in porous media, PhD thesis, U. of Waterloo, Canada.

    Google Scholar 

  • Chatzis, I. and Dullien, F. A. L., 1977, Modelling pore structure by 2-D and 3-D networks, with applications to sandstones, JCPT 16, 97–108.

    Google Scholar 

  • Chatzis, I. and Dullien, F. A. L., 1982, Application of the theory of percolation for a model of drainage in porous media and relative permeability of injected non-wetting liquid, Rev. l'Institut Francais du Petrole 37, 183–205.

    Google Scholar 

  • Chatzis, I. and Dullien, F. A. L., 1984, Dynamic immiscible displacement mechanisms in poredoublets: Theory versus experiment, J. Colloid Interface Sci. 91, 199–123.

    Google Scholar 

  • Chatzis, I., Morrow, N. R., and Lim, H. T., 1983, Magnitude and detailed structure of residual oil saturation, SPEJ, April, 311–326.

  • Chen, J. and Koplik, J., 1985, Immiscible fluid displacement in small networks, J. Colloid Interface Sci. 108, 304–330.

    Google Scholar 

  • Cohen, M. H. and Lin C., 1981, Proc. Conf. Macroscopic Properties of Disordered Media, eds. R. Burridge, S. Childress, and G. Paapanicolau, Springer-Verlag, New York 74.

    Google Scholar 

  • Colonna, J., Brissaud, F., and Millet, J. L., 1971, Evolution of capillary and relative permeability hysteresis, SPEJ 28–38.

  • Colonna, J. and Millet, J. L., 1970, Effect des deplacements diphasiques alternes sur les proprietes hydrodynamiques des Roches, Rev. Inst. Francais Petrole, Nov., 1317–1328.

  • Dagan, Z., Weinbaum, S., and Pfefffer, 1982, An infinite-series solution for the creeping motion through an orifice of finite length, J. Fluid Mech. 115, 505–523.

    Google Scholar 

  • Danis, M. and Jacquin, C., 1983, Influence du contraste de viscosites sur les permeabilites relatives lors du drainage: Experimentation et modelisation, Rev. Inst. Francais Petrole 38, 723–733.

    Google Scholar 

  • Diaz, C. E., Chatzis, I., and Dullien, F. A. L., 1987, Simulation of capillary pressure curves using bond correlated site percolation on a simple cubic network, Transport in Porous Media 2, 215–240.

    Google Scholar 

  • Dombrowski, H. S. and Brownell, L. E., 1954, Residual equilibrium saturation of porous media, Ind. Eng. Chem. 46, 1207–1219.

    Google Scholar 

  • Donaldson, E. C., Lorenz, P. B., and Thomas, R. D., 1966, The effects of viscosity and wettability on oil and water relative permeabilities, paper SPE 1562 presented at the 41st Annual Tech. Conf. of SPE, Dallas, TX, Oct. 2–5.

  • Dullien, F. A. L., 1979, Porous Media: Fluid Transport and Pore Structure, Academic Press, New York.

    Google Scholar 

  • Dullien, F. A. L. and Dhawan, G. K., 1974, Characterization of pore structure by a combination of quantitative photomicrography and mercury porosimetry, J. Colloid Interface Sci. 47, 337–349.

    Google Scholar 

  • Dullien, F. A. L. and Dhawan, G. K., 1975, Bivariate pore-size distributions of some sandstones, J. Colloid Interface Sci. 52, 129–135.

    Google Scholar 

  • Dullien, F. A. L., Lai, F. S. Y., and MacDonald, I. F., 1986, Hydraulic continuity of residual wetting phase in porous media, J. Colloid Interface Sci. 109, 201–218.

    Google Scholar 

  • Elman, H. C., 1982, Iterative methods for large, sparse, nonsymmetric systems of linear equations, Research Report #229, Yale Univ. Dept. Comp. Sci.

  • Ehrlich, R. and Crane, F. E., 1969, A model for two-phase flow in consolidated materials, SPEJ 21, 221–231.

    Google Scholar 

  • Evrenos, A. I. and Corner, A. G., 1969, Numerical simulation of hysteretic flow in porous media, paper SPE 2693 presented at the 44th Annual Fall Meeting of SPE, Denver, Colo., Sept 28–Oct. 1.

  • Fatt, I., 1956a, The network model of porous media I. Capillary characteristics Pet. Trans. AIME 217, 144–159.

    Google Scholar 

  • Fatt, I., 1956b, The network model of porous media II. Dynamic properties of a single size tube network Pet. Trans. AIME 207, 160–163.

    Google Scholar 

  • Fatt, I., 1956c, The network model of porous media III. Dynamic properties of networks with tube radius distribution, Pet. Trans. AIME 207, 164–181.

    Google Scholar 

  • Fulcher, R. A. Jr, Ertekin, T., and Stahl, C. D., 1985, Effect of capillary number and its constituents on two-phase relative permeabilities, SPEJ, Feb., 249–260.

  • Geffen, T. M., Owens, W. W., Parrish, D. R., and Morse, 1951, Experimental investigation of factors affecting laboratory relative permeability measurements, Pet. Trans. AIME 192, 99–110.

    Google Scholar 

  • Gladfelter, R. E. and Gupta, S. P., 1978, Effect of fractional flow hysteresis on recovery of tertiary oil, paper SPE 7577 presented at the 53rd Annual Fall Technical Conf. and Exhibition of SPE, Houston, TX, October 1–3.

  • Goddard, R. R., Gardner, G. H. F., and Wyllie, M. R. J., 1962, Some aspects of multi-phase distribution in porous bodies, Proc. Symp. Interactions Between Fluids and Particles, Inst. Chem. Eng., London, June 20–22, pp.326–332.

    Google Scholar 

  • Heiba, A. A., Sahimi, M., Davis, H. T., and Scriven, L. E., 1982, Percolation theory of two-phase relative permeability, SPE 11015, presented at the 57th annual Fall Meeting of the Society of Petroleum Engineers, New Orleans, LA.

  • Hopkins, M. R. and Ng, K. M., 1986, Liquid-liquid relative permeability: network models and experiments, Chem. Eng. Commun. 46, 253–279.

    Google Scholar 

  • Hulin, J. P., Chairlaix, E., Plona, T. J., Oger, L., and Guyon, E., 1987, Experimental study of tracer dispersion in sintered glass beads with a bidisperse size distribution, preprint submitted to AIChE.

  • Jerauld, G. R., Hatfleld, J. C., Scriven, L. E., and Davis, H. T., 1984, Percolation and conduction on Voronoi and triangular networks: a case study in topological disorder, J. Phys. C: Solid State Phys. 17, 1519–1529.

    Google Scholar 

  • Jerauld, G. R., Scriven, L. E., and Davis, H. T., 1984, Percolation and conduction on the 3D Voronoi and regular networks: a second case study in topological disorder, J. Phys. C: Solid State Phys. 17, 3429–3439.

    Google Scholar 

  • Katz, A. J. and Thompson, A. H., 1987, Prediction of rock electrical conductivity from mercury injection measurements, J. Geophys. Res. 92, 599–607.

    Google Scholar 

  • Katz, A. J. and Thompson, A. H., 1987, Quantitative prediction of permeability in porous rocks, Phys. Rev. B 34, 8179–8181.

    Google Scholar 

  • Keelan, D. K. and Pugh, V. J., 1975, Trapped-gas saturations in carbonate formations, SPEJ, April, 149–160.

  • Killough, J. E., 1976, Reservoir simulation with history-dependent saturation functions, SPEJ, February, 37–48.

  • Kirkpatrick, S., 1973, Percolation and conduction, Rev. Mod. Phys. 45, 574–588.

    Google Scholar 

  • Koplik, J., 1982, Creeping flow in two-dimensional networks, J. Fluid Mech. 119, 219–247.

    Google Scholar 

  • Koplik, J., Lin, C., and Vermette M., 1984, Conductivity and permeability from microgeometry, J. Appl. Phys. 56, 3127–3131.

    Google Scholar 

  • Koplik, J., Wilkinson, D., and Willemsen, J. F., 1983, Percolation and capillary fluid displacement, Proc. Workshop on Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling and Simulation, ed. B. D. Hughes and B. W. Ninham, held in Minneapolis, MN, Feb. 13–19, Lecture Notes in Mathematics No. 1035, Springer-Verlag, New York.

    Google Scholar 

  • Labastie, A., Guy, M., Delclaud, J. P., and Iffly, R., 1980, Effect of flow rate and wettability on water-oil relative permeabilities and capillary pressure, SPE 9236 presented at the 55th Tech. Conf. at SPE-AIME, Dallas, TX, Sept. 21–24.

  • Land, C. S., 1968, Calculation of imbibition relative permeability for two- and three-phase flow from rock properties, SPEJ, June, 149–156.

  • Larson, R. G., 1981, Derivation of generalized Darcy equations for creeping flow in porous media, I&EC Fundamentals 20, 132–137.

    Google Scholar 

  • Larson, R. G., Scriven, L. E., and Davis, H. T., 1981, Percolation theory of two-phase flow in porous media, Chem. Eng. Sci. 36, 57–73.

    Google Scholar 

  • Lenormand, R., Zarcone, C., and Sarr, A. J., 1983, Mechanisms of the displacement of one fluid by another in a network of capillary ducts, J. Fluid Mech. 135, 337–353.

    Google Scholar 

  • Lenormand, R. and Zarcone, C., 1984, Role of roughness and edges during imbibition in square capillaries, paper SPE 13264 presented at the 59th Annual Technical Conference and Exhibition of SPE, Houston, TX, Sept. 16–19.

  • Leverett, M. C., 1938, Flow of oil-water mixtures through unconsolidated sands, Trans. AIME 132, 149–171.

    Google Scholar 

  • Levine, S. and Cuthiell, D. L., 1986, Relative permeabilities in two-phase flow through porous media: an application of effective medium theory, J. Can. Petr. Tech., Sept–Oct., 74–84.

  • Li, Y., Laidlaw, W. G. and Wardlaw, N. C., 1986, Sensitivity of drainage and imbibition to pore structures as revealed by computer simulation of displacement process, Adv. Colloid Interface Sci. 26, 1–68.

    Google Scholar 

  • Li, Y. and Wardlaw, N. C., 1985, ‘The influence of wettability and critical pore throat size on snapoff, J. Colloid Interface Sci. 109, 461–472.

    Google Scholar 

  • Li, Y. and Wardlaw, N. C., 1985, Mechanisms of nonwetting phase trapping during imbibition at slow rates, J. Colloid Interface Sci. 109, 473–486.

    Google Scholar 

  • Lin, C. and Cohen, M. H., 1982, Quantitative methods for microgeometric modeling, J. Appl. Phys. 53, 4152–415.

    Google Scholar 

  • MacDonald, I. F., Kaufmann, P., and Dullien, F. A. L., 1986, Quantitative image analysis of finite porous media: II. Specific genus of cubic lattice models and Berea sandstone, J. Microsc. 144, 297–316.

    Google Scholar 

  • Mathers, E. G. and Dawe, R. A., 1985, Visualization of microscopic displacement processes within porous media in EOR capillary pressure effects, Proc. ACTES, 3rd, European Meeting On Improved Oil Recovery 1, 49–58.

    Google Scholar 

  • Mattax, C. C. and Kyte, J. R., 1961, Ever see a water flood? Oil and Gas J. 59, 115.

    Google Scholar 

  • Meijering, J. L., 1953, Interface area, edge length and number of vertices in crystal aggregates with random nucleation, Philips Res. Rep. 8, 270–90.

    Google Scholar 

  • Meyers, K. O. and Salter, S. J., 1984, Concepts pertaining to reservior pretreatment for chemical flooding, paper SPE/DOE 12696 presented at the fourth Symposium on Enhanced Oil Recovery, Tulsa, OK, April 15–18.

  • Mohanty, K. K., 1981, Fluids in Porous Media: Two-Phase Distribution and Flow, PhD thesis, University of Minnesota, Minneapolis.

    Google Scholar 

  • Mohanty, K. K., Davis, H. T., and Scriven, L. E., 1987, Physics of oil entrapment in water-wet rock, SPE Reservoir Engineering 1, 113–127.

    Google Scholar 

  • Mohanty, K. K. and Salter, S. J., 1982, Multiphase flow in porous media: II Pore-level modeling, SPE 11018 presented at the 57th Tech. Conf. at SPE-AIME, New Orleans, Sept. 26–29.

  • Moore, T. F. and Slobod, R. L., 1956, The effect of viscosity and capillarity on the displacement of oil by water, Prod. Monthly 20, 20–30.

    Google Scholar 

  • Morgan, J. T. and Gordon, D. T., 1970, Influence of pore geometry on water-oil relative permeability, J. Petrol. Tech. 22, 1199.

    Google Scholar 

  • Morrow, N. R., 1970, Irreducible wetting-phase saturations in porous media, Chem. Eng. Sci. 25, 1799–1815.

    Google Scholar 

  • Muskat, M., Wyckoff, R. D., Botset, H. G. and Meres, M. W., 1937, ‘Flow of gas-liquid mixtures through sands, Trans. AIME 123, 69–96.

    Google Scholar 

  • Naar, J., Wygal, R. J., and Henderson, J. H., 1962, Imbibition relative permeability in unconsolidated porous media, SPEJ 2, 13–17.

    Google Scholar 

  • Osoba, J. S., Richardson, J. G., Kerver, J. K., Hafford, J. A., and Blair, P. M., 1951, Laboratory measurements of relative permeability, Pet. Trans. AIME 191, 47–56.

    Google Scholar 

  • Owens, W. W. and Archer, D. L., 1971, The effect of rock wettability on oil-water relative permeability relationships, J. Pet. Tech. 23, 873–878.

    Google Scholar 

  • Payatakes, A. C., Ng, K. M., and Flummerfelt, R. W., 1980, Oil ganglion dynamics during immiscible displacement: model formulation, AIChE J. 26, 430.

    Google Scholar 

  • Pickell, J. J., Swanson, B. F. and Hickman, W. B., 1966, Application of air-mercury and oil-air capillary pressure data in the study of pore structure and fluid distribution, SPEJ 6, 55–61.

    Google Scholar 

  • Poulovassilis, A., 1970, Hysteresis of pore water in granular porous bodies, Soil Science 109, 5–12.

    Google Scholar 

  • Ramakrishnan, T. S. and Wasan, D. T., 1986, Effect of capillary number on the relative permeability function for two-phase flow in porous media, Powder Technol. 48, 99–124.

    Google Scholar 

  • Ramondi, P. and Torcaso, M. A., 1964, Distribution of the oil phase obtained upon imbibition of water, SPEJ 4, March, 49–54.

    Google Scholar 

  • Richardson, J. G., Kerver, J. K., Hafford, J. A., and Osoba, J. S., 1952, Laboratory determination of relative permeability, Pet. Trans. AIME 195, 187–196.

    Google Scholar 

  • Roof, J. G. 1970, Snap-off of oil droplets in water-wet pores, SPEJ 10, March, 85–90.

    Google Scholar 

  • Russell, R. G., Morgan, F., and Muskat, M., 1947, Some experiments on the mobility of interstitial waters, Trans. AIME 170, 51–61.

    Google Scholar 

  • Ruzyla, K., 1986, Characterization of pore space by quantitative image analysis, SPE Formation Evaluation, August, 389–398.

  • Salter, S. J. and Mohanty, K. K., 1982, Multiphase flow in porous media: I. Macroscopic observations and modeling, SPE 11017 presented at the 57th Annual Tech. Conf. of the SPE-AIME, New Orleans, Sept. 26–29.

  • Sandberg, C. R., Gournay, L. S., and Sipple, R. F., 1958, The effect of fluid-flow rate and viscosity on laboratory determinations of oil-water relative permeabilities, Trans. AIME 213, 36–43.

    Google Scholar 

  • Schultz, M. H. et al., 1983, Conjugate Gradient-Like Iterative Methods Project Two-Year Summary, Scientific Computing Associates.

  • Talash, A. W., 1976, Experimental and calculated relative permeability data for systems containing tension additives, paper SPE 5810 presented at the Symposium on Improved Oil Recovery, Tulsa, OK, March 22–24.

  • Talsma, T., 1970, Hysteresis in two sands and the independent domain model, Water Resour. Res. 6, 964–970.

    Google Scholar 

  • Topp, G. C. and Miller, E. E., 1966, Hysteretic moisture characteristics and hydraulic conductivities for glass-bead media, Soil Sci. Soc. Am. Proc. 30, 156.

    Google Scholar 

  • Voronoi, G., 1908, Nouvelles applications des paramèteres continus à la théorie des formes quadratiques, J. Reine Angew. Math. 134, 198–287.

    Google Scholar 

  • Wardlaw, N. C. and Taylor, R. P., 1976, Mercury capillary pressure curves and the interpretation of pore-structure and capillary behavior in reservoir rocks, Bull. Canadian Petroleum Geology 24, 225–262.

    Google Scholar 

  • Wilkinson, D., 1986, Percolation effects in immiscible displacement, Phys. Rev. A. 34, 1380–1391.

    Google Scholar 

  • Wilkinson, D. and Willemsen, J. F., 1983, Invasion percolation: a new form of percolation theory, J. Phys. A.: Math. Gen. 16, 3365–3376.

    Google Scholar 

  • Winterfeld, P. H., 1981, Percolation and Conduction Phenomena in Disordered Composite Media, PhD thesis, University of Minnesota, Minneapolis.

    Google Scholar 

  • Yadav, G. D., Dullen, F. A. L., Chatzis, I., and MacDonald, I. F., 1987, Microscopic distribution of wetting and nonwetting phases in sandstones during immiscible displacements, SPE Reservoir Engineering, 2, 137–147.

    Google Scholar 

  • Yanuka, M., Dullien, F. A. L., and Elrick, D. E., 1984, Serial sectioning digitization of porous media for two- and three-dimensional analysis and reconstruction, J. Microsc. 135, 159–168.

    Google Scholar 

  • Yanuka, M., Dullien, F. A. L., and Elrick, D. E., 1986, Percolation processes and porous media: I. Geometrical and topological model of porous media using a three-dimensional joint pore size distribution, J. Colloid Interface Sci. 112, 24–41.

    Google Scholar 

  • Yuan, H. H., 1981, The influence of pore coordination on petrophysical parameters, paper SPE 10074 presented at the 56th Annual Technical Conference of the SPE, San Antonio, TX, Oct. 5–7.

  • Yuster, S. T., 1951, Theoretical considerations of multiphase flow in idealized capillary systems, Proc. 3rd World Petroleum Congress, The Hague, Netherlands, Section II, pp. 437–445.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jerauld, G.R., Salter, S.J. The effect of pore-structure on hysteresis in relative permeability and capillary pressure: Pore-level modeling. Transp Porous Med 5, 103–151 (1990). https://doi.org/10.1007/BF00144600

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00144600

Key words

Navigation