Skip to main content
Log in

Thermodynamics of strong coupling superconductors including the effect of anisotropy

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The thermodynamics of several elemental superconductors is computed from isotropic Eliashberg theory formulated on the imaginary frequency axis. A symmary of the available experimental literature is presented and a comparison with theory is given. The small disagreements that are found are all in the direction expected from anisotropy effects. We calculate the effect of a small amount of model anisotropy on the critical temperature, critical field, and high-temperature specific heat from an exact solution of the anisotropic Eliashberg equations. These are the first such results below the critical temperature; unlike previous analytical work, we include retardation, anisotropy in the mass enhancement, and the effect of the Coulomb repulsion in enhancing anisotropy, all of which are significant. We derive a new formula independent of any model anisotropy for the rate of decrease with impurity lifetime of the critical temperature. Finally we demonstrate how the commonly used formulas of Markowitz and Kadanoff and of Clem may give entirely misleading estimates of the gap anisotropy when used to interpret certain experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Dynes and J. M. Rowell, unpublished; tables available on request from Bell Laboratories.

  2. J. M. Daams, Ph.D. Thesis, Master University (1978), unpublished.

  3. J. R. Clem, Ann. Phys. (NY) 40, 268 (1966).

    Google Scholar 

  4. D. Markowitz and L. P. Kadanoff, Phys. Rev. 131, 563 (1963).

    Google Scholar 

  5. G. Bergmann and D. Rainer, Z. Phys. 263, 59 (1973).

    Google Scholar 

  6. J. M. Daams and J. P. Carbotte, Can. J. Phys. 56, 1248 (1978).

    Google Scholar 

  7. C. R. Leavens and E. W. Fenton, Solid State Comm. 33, 597 (1980).

    Google Scholar 

  8. H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).

    Google Scholar 

  9. H. K. Leung, J. P. Carbotte, and C. R. Leavens, J. Low Temp. Phys. 24, 25 (1976).

    Google Scholar 

  10. D. Rainer and G. Bergmann, J. Low Temp. Phys. 14, 501 (1974).

    Google Scholar 

  11. E. Maxwell and O. S. Lutes, Phys. Rev. 95, 333 (1954).

    Google Scholar 

  12. J. E. Schirber and C. A. Levenson, Phys. Rev. 123, 115 (1961).

    Google Scholar 

  13. D. K. Finnemore, D. E. Mapother, and R. W. Shaw, Phys. Rev. 118, 127 (1960).

    Google Scholar 

  14. H. Rohrer, Helv. Phys. Acta 33, 675 (1960).

    Google Scholar 

  15. D. K. Finnemore and D. E. Mapother, Phys. Rev. 140, A507 (1965).

    Google Scholar 

  16. B. J. C. Van der Hoeven Jr. and P. H. Keesom, Phys. Rev. 135, A631 (1964).

    Google Scholar 

  17. R. W. Shaw, D. E. Mapother, and D. C. Hopkins, Phys. Rev. 120, 88 (1960).

    Google Scholar 

  18. N. L. Muench, Phys. Rev. 99, 1814 (1955).

    Google Scholar 

  19. M. D. Reeber, Phys. Rev. Lett. 4, 198 (1960).

    Google Scholar 

  20. H. R. O'Neal and N. E. Phillips, Phys. Rev. 137, A748 (1965).

    Google Scholar 

  21. C. A. Bryant and P. H. Keesom, Phys. Rev. 123, 491 (1961).

    Google Scholar 

  22. J. R. Clement and E. H. Quinnell, Phys. Rev. 92, 258 (1953).

    Google Scholar 

  23. M. D. Fiske, J. Phys. Chem. Solids 2, 191 (1957).

    Google Scholar 

  24. J. E. Gueths, C. A. Reynolds, and M. A. Mitchell, Phys. Rev. 150, 346 (1966).

    Google Scholar 

  25. J. F. Cochran, Ann. Phys. (NY) 19, 186 (1962).

    Google Scholar 

  26. W. S. Corak and C. B. Satterthwaite, Phys. Rev. 102, 662 (1956).

    Google Scholar 

  27. J. E. Neighbor, J. F. Cochran, and C. A. Shiffman, Phys. Rev. 155, 384 (1967).

    Google Scholar 

  28. C. A. Shiffman, J. F. Cochran, and M. Garber, J. Phys. Chem. Solids 24, 1369 (1963).

    Google Scholar 

  29. J. R. Clement and E. H. Quinnell, Phys. Rev. 85, 502 (1952).

    Google Scholar 

  30. D. L. Decker, D. E. Mapother, and R. W. Shaw, Phys. Rev. 112, 1888 (1958).

    Google Scholar 

  31. G. Chanin and J. P. Torre, Phys. Rev. B 5, 4357 (1972).

    Google Scholar 

  32. S. Alterovitz, Phys. Rev. 13, B121 (1976).

    Google Scholar 

  33. C. H. Hinrichs and C. A. Swenson, Phys. Rev. 123, 1106 (1961).

    Google Scholar 

  34. R. D. Worley, M. W. Zemansky, and H. A. Boorse, Phys. Rev. 99, 447 (1955).

    Google Scholar 

  35. J. I. Budnick, Phys. Rev. 119, 1578 (1960).

    Google Scholar 

  36. D. White, C. Chou, and H. L. Johnston, Phys. Rev. 109, 797 (1958).

    Google Scholar 

  37. T. F. Stromberg and C. A. Swenson, Phys. Rev. Lett. 9, 370 (1962).

    Google Scholar 

  38. D. K. Finnemore, T. F. Stromberg, and C. A. Swenson, Phys. Rev. 149, 231 (1966).

    Google Scholar 

  39. R. A. French, Cryogenics 8, 30 (1968).

    Google Scholar 

  40. C. Chou, D. White, and H. L. Johnston, Phys. Rev. 109, 788 (1958).

    Google Scholar 

  41. H. A. Leupold and H. A. Boorse, Phys. Rev. 134, A1322 (1964).

    Google Scholar 

  42. M. Ishikawa and L. E. Toth, Phys. Rev. 13, 1856 (1971).

    Google Scholar 

  43. V. Novotny and P. P. M. Meincke, J. Low Temp. Phys. 18, 147 (1975).

    Google Scholar 

  44. A. Brown, M. W. Zemansky, and H. A. Boorse, Phys. Rev. 92, 52 (1953).

    Google Scholar 

  45. J. Ferreira da Silva, E. A. Burgemeister, and Z. Dokoupil, Physica 41, 409 (1969).

    Google Scholar 

  46. T. Ohtsuka and Y. Kimura, Physica 55, 562 (1971).

    Google Scholar 

  47. J. M. Corsan and A. J. Cook, Phys. Lett. 28A, 500 (1969).

    Google Scholar 

  48. A. T. Hershfeld, H. A. Leupold, and H. A. Boorse, Phys. Rev. 127, 1501 (1962).

    Google Scholar 

  49. G. Gladstone, M. A. Jensen, and J. R. Schrieffer, Superconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1979), Vol. 2, p. 665.

    Google Scholar 

  50. J. M. Daams and J. P. Carbotte, J. Low Temp. Phys. 40, 135 (1980).

    Google Scholar 

  51. J. Ashkenazi, M. Dacorogna, and P. B. Allen, preprint.

  52. J. M. Daams and J. P. Carbotte, Solid State Comm. 33, 585 (1980).

    Google Scholar 

  53. G. Rickayzen, Theory of Superconductivity (Wiley, 1965).

  54. B. Mitrović, C. R. Leavens, and J. P. Carbotte, Phys. Rev. B 21, 5048 (1980).

    Google Scholar 

  55. J. M. Daams and J. P. Carbotte, to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daams, J.M., Carbotte, J.P. Thermodynamics of strong coupling superconductors including the effect of anisotropy. J Low Temp Phys 43, 263–286 (1981). https://doi.org/10.1007/BF00116155

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00116155

Keywords

Navigation