Skip to main content
Log in

Localization of plasma membrane H+-ATPase in nodules of Phaseolus vulgaris L.

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Legume nodules have specialized transport functions for the exchange of carbon and nitrogen compounds between bacteroids and root cells. Plasma membrane-type (vanadate-sensitive) H+-ATPase energizes secondary active transporters in plant cells and it could drive exchanges across peribacteroidal and plasmatic membranes. A nodule cDNA corresponding to a major isoform of Phaseolus vulgaris H+-ATPase (designated BHA1) has been cloned. BHA1 is a functional proton pump because after removal of its inhibitory domain and can complement a yeast mutant unable to synthesize a H+-ATPase. BHA1 is not nodule-specific, since it is also expressed in roots of uninfected plants. It belongs to the subfamily of plasma membrane H+-ATPases defined by the Arabidopsis AHA1, AHA2 and AHA3 genes and the tobacco PMA4 and corn MHA2 genes. In situ hybridization in nodule sections indicates high expression of BHA1 limited to uninfected cells. These results were confirmed by immunocytochemistry. The relatively low expression of plasma membrane-type H+-ATPase in Rhizobium-infected cells put a note of caution on the origin of the vanadate-sensitive ATPase described in preparations of peribacteroidal membranes. Also, our results indicate that active transport in symbiotic nodules is most intense at the plasma membrane of uninfected cells and support a specialized role of uninfected tissue for nitrogen transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altabella T, Palazon J, Ibarz E, Piñol MT, Serrano R: Effect of auxin concentration and growth phase on the plasma membrane H+-ATPase of tobacco calli. Plant Sci 70: 209–214 (1990).

    Google Scholar 

  2. Blake MS, Johnston KH, Russell-Jones GJ, Gotschlich EC: A rapid, sensitive method for detection of alkaline phosphatase anti-antibody on Western blots. Anal Biochem 136: 175–179 (1984).

    Google Scholar 

  3. Blumwald E, Fortin MG, Rea PA, Verma DPS and Poole RJ: Presence of host-plasma membrane type H+-ATPase in the membrane envelope enclosing the bacteroids in soybean root nodules. Plant Physiol 78: 665–672 (1985).

    Google Scholar 

  4. Boutry M, Michelet B and Goffeau A: Molecular cloning of a family of plant genes encoding a protein homologous to plasma membrane H+-translocating ATPases. Biochem Biophys Res Comm 162: 567–574 (1989).

    Google Scholar 

  5. Bradford MM: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254 (1976).

    Google Scholar 

  6. Brewing NJ: The role of the plant plasma membrane in symbiosis. In: Larsson C, Møller IM (eds) The Plant Plasma Membrane, pp. 351–875. Springer-Verlag, Berlin (1990).

    Google Scholar 

  7. Bush DR: Proton-coupled sugar and amino acid transporters in plants. Annu Rev Plant Physiol Plant Mol Biol 44: 513–542 (1993).

    Google Scholar 

  8. Cid A, Perona R, Serrano R: Replacement of the promoter of the yeast plasma membrane ATPase gene by a galactose-dependent promoter and its physiological consequences. Curr Genet 12: 105–110 (1987).

    Google Scholar 

  9. Coen FS, Romero JM, Doyle S, Elliot R, Murphy G, Carpenter R: Floricula, a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311–1322 (1990).

    Google Scholar 

  10. Church GM, Gilbert W: Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995 (1984).

    Google Scholar 

  11. Day DA, Ou Yang L-J, Udvardi MK: Nutrient exchange across the peribacteroidal membrane of isolated symbiosomes. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen Fixation: Achievements and Objectives, pp. 219–226. Chapman and Hall, New York (1990).

    Google Scholar 

  12. De Kerchove d'Exaerde A, Supply P, Dufour JP, Bogaerts P, Thines D, Goffeau A, Boutry M: Functional complementation of a null mutation of the yeast Saccharomyces cerevisiae plasma membrane H+-ATPase by a plant H+-ATPase gene. J Biol Chem 270: 23828–23837 (1995).

    Google Scholar 

  13. De Vries S, Hoge H, Bisseling T: Isolation of total and polysomal RNA from plant tissues. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant Molecular Biology Manual, pp. B6/1–13. Kluwer Academic Publishers, Dordrecht (1989).

    Google Scholar 

  14. DeWitt ND, Harper JF, Sussman MR: Evidence for a plasma membrane proton pump in phloem cells of higher plants. Plant J 1: 121–128 (1991).

    Google Scholar 

  15. Domigan NM, Farnden KJF, Robertson JG, Monk BC: Characterization of the peribacteroid membrane ATPase of lupin root nodules. Arch Biochem Biophys 264: 564–673 (1988).

    Google Scholar 

  16. Doyle JJ, Doyle JL: Isolation of plant DNA from fresh tissues. Focus 12: 13–15 (1990).

    Google Scholar 

  17. Dunn SD: Effects of the modification of transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins in Western blots by monoclonal antibodies. Anal Biochem 15: 144–153 (1986).

    Google Scholar 

  18. Ewing NN, Wimmers LE, Meyer DJ, Chetelat RT, Bennet AB: Molecular cloning of tomato plasma membrane proton-ATPase. Plant Physiol 94: 1874–1881 (1990).

    Google Scholar 

  19. Feinberg AP, Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    Google Scholar 

  20. Fisher RF, Long SR: Rhizobium-plant signal exchange. Nature 357: 655–660 (1992).

    Google Scholar 

  21. Fortin MG, Zelechowska M, Verma DPS: Specific targeting of membrane nodulins to the bacteroid-enclosing compartment in soybean nodules. EMBO J 4: 3041–3046 (1985).

    Google Scholar 

  22. Gorfinkel L, Diallinas G, Scazzocchio C: Sequence and regulation of the uapA gene encoding a uric acid-xanthine permease in the fungus Aspergillus nidulans. J Biol Chem 268: 23376–23381 (1993).

    Google Scholar 

  23. Hanson JB: Application of the chemi-osmotic hypothesis to ion transport across the root. Plant Physiol 62: 402–405 (1978).

    Google Scholar 

  24. Hara Y, Urayama O, Kawakami K, Nojima H, Nagamune H, Kojima T, Ohta T, Nagano K, Nakao (1987). Primary structures of two types of alpha-subunit of rat brain Na+/K+-ATPase deduced from cDNA sequences. J Biochem 102: 43–58.

    Google Scholar 

  25. Haro R, Garciadeblas B, Rodriguez-Navarro A: A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291: 189–191 (1991).

    Google Scholar 

  26. Harper JF, Surowy TK, Sussman MR: Molecular cloning and sequence of cDNA encoding the plasma membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci USA 86: 1234–1238 (1989).

    Google Scholar 

  27. Harper JF, Manney L, DeWitt ND, Yoo MH, Sussman MR: The Arabidopsis thaliana plasma membrane H+-ATPase multigene family. J Biol Chem 265: 13601–13608 (1990).

    Google Scholar 

  28. Ireland R: Amino acid and ureide biosynthesis. In: Dennis DT, Turpin DH (eds) Plant Physiology, Biochemistry and Molecular Biology, pp. 407–421. Longman Scientific and Technical, Burnt Mill, Harlow (1990).

    Google Scholar 

  29. Jackson D, Culiañez-Macia F, Prescott AG, Roberts K, Martin C: Expression patterns of myb genes from Antirrhinum flowers. Plant Cell 3: 115–125 (1991).

    Google Scholar 

  30. Jin Y-K, Bennetzen JL: Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. Plant Cell 6: 1177–1186 (1994).

    Google Scholar 

  31. Johansson F, Sommarin M, Larsson C: Fusicoccin activates the plasma membrane H+-ATPase by a mechanism involving the C-terminal inhibitory domain. Plant Cell S: 321–327 (1993).

    Google Scholar 

  32. Kempter B, Luppa P, Neumeier D: A short procedure for Southern blotting on neutral and anionic membranes. Trends Genet 7: 109–110 (1991).

    Google Scholar 

  33. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).

    Google Scholar 

  34. Lara M, Porta H, Padilla J, Folch J, Sanchez F: Heterogeneity of glutamine synthetase polypeptides in Phaseolus vulgaris L. Plant Physiol 76: 1019–1023 (1984).

    Google Scholar 

  35. Ludwig SR, Oppenheimer DG, Silflow CD, Snustad DP: Characterization of the α-tubulin gene family of Arabidopsis thaliana. Proc Natl Acad Sci USA 84: 5633–5837 (1987).

    Google Scholar 

  36. Martinez-Romero E, Segovia L, Martinez-Mercante F, Franco AA, Pardo MA: Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bact 41: 417–426 (1991).

    Google Scholar 

  37. Miao G-H, Verma DPS: Soybean nodulin-26 gene encoding a channel protein is expressed only in the infected cells of nodules and is regulated differently in roots of homologous and heterologous plants. Plant Cell 5: 781–794 (1993).

    Google Scholar 

  38. Moriau L, Bogaerts P, Jonniaux J-L, Boutry M: Identification and characterization of a second plasma membrane H+-ATPase gene subfamily in Nicotiana plumbaginifolia. Plant Mol Biol 21: 955–963 (1993).

    Google Scholar 

  39. Mylona P, Pawlowski K, Bisseling T: Symbiotic nitrogen fixation. Plant Cell 7: 869–885 (1995).

    Google Scholar 

  40. Newcomb EH, Tandon ShR, Kowal RR: Ultrastructural specialization for ureide production in uninfected cells of soybean root nodules. Protoplasma 125: 1–12 (1985).

    Google Scholar 

  41. Ouyang L-J, Whelan J, Weaver CD, Roberts D, Day DA: Protein phosphorylation stimulates the rate of malate uptake across the peribacteroid membrane of soybean nodules. FEBS Lett 293: 188–190 (1991).

    Google Scholar 

  42. Ouyang L-J, Day DA: Transport properties of symbiosomes isolated from siratro nodules. Plant Physiol Biochem 30: 613–623 (1992).

    Google Scholar 

  43. Palmgren MG, Sommarin M, Serrano R, Larsson C: Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H+-ATPase. J Biol Chem 266: 20470–20475 (1991).

    Google Scholar 

  44. Palmgren MG, Christensen G: Complementation in situ of the yeast plasma membrane H+-ATPase gene pma 1 by an H+-ATPase gene from a heterologous species. FEBS Lett 317: 216–222 (1993).

    Google Scholar 

  45. Palmgren MG, Christensen G: Functional comparisons between plant plasma membrane H+-ATPase isoforms expressed in yeast. J Biol Chem 269: 3027–3033 (1994).

    Google Scholar 

  46. Pardo JM, Serrano R: Structure of a plasma membrane H+-ATPase gene from the plant Arabidopsis thaliana. J Biol Chem 264: 8557–8562 (1989).

    Google Scholar 

  47. Parets-Soler A, Pardo JM, Serrano R: Immunocytolocalization of plasma membrane H+-ATPase. Plant Physiol 93: 1654–1658 (1990).

    Google Scholar 

  48. Perez C, Michelet B, Ferrant V, Bogaerts P, Boutry M: Differential expression within a three-gene subfamily encoding a plasma membrane proton ATPase in Nicotiana plumbaginifolia. J Biol Chem 267: 1204–1211 (1992).

    Google Scholar 

  49. Roldán M, Donaire JP, Pardo JM, Serrano R: Regulation of root plasma membrane H+-ATPase in sunflower seedlings. Plant Sci 79: 163–172 (1991).

    Google Scholar 

  50. Regenberg B, Villalba JM, Lanfermeijer FC, Palmgren MG: Carboxy-terminal deletion analysis of plant plasma membrane H--ATPase: yeast as model system for solute transport membrane. Plant Cell 7: 1655–1666 (1995).

    Google Scholar 

  51. Samuels AL, Fernando M, Glass ADM: Immunofluorescent localization of plasma membrane H+-ATPase in barley roots and effects of K+ nutrition. Plant Physiol 99: 1509–1514 (1992).

    Google Scholar 

  52. Sanchez F, Padilla JE, Perez H, Lara M: Control of nodulin genes in rootnodule development and metabolism. Ann Rev Plant Physiol Plant Mol Biol 42: 507–528 (1991).

    Google Scholar 

  53. Selker JM: Three-dimensional organization of uninfected tissue in soybean root nodules and its relation to cell specialization in the central region. Protoplasma 147: 178–190 (1988).

    Google Scholar 

  54. Serrano R: H+-ATPase from plasma membranes of Saccharomyces cerevisiae and Avena sativa roots: purification and reconstitution. Meth Enzymol 157: 533–544 (1988).

    Google Scholar 

  55. Serrano R: Structure and function of plasma membrane ATPase. Annu Rev Plant Physiol Plant Mol Biol 40: 61–84 (1989).

    Google Scholar 

  56. Serrano R: Structure, function and regulation of plasma membrane H+-ATPase. FEBS Lett 325: 108–111 (1993).

    Google Scholar 

  57. Serrano R, Villalba JM: Expression and localization of plant membrane proteins in Saccharomyces. Meth Cell Biol 50: 481–496 (1995).

    Google Scholar 

  58. Serrano R, Kielland-Brandt MC, Fink G: Yeast plasma membrane ATPase is essential for growth and has homology with (Na++K+), K+ and Ca2+-ATPases. Nature 319: 689–693 (1986).

    Google Scholar 

  59. Sussman MR: Molecular analysis of proteins in the plant plasma membrane. Annu Rev Plant Physiol Plant Mol Biol 45: 211–234 (1994).

    Google Scholar 

  60. Udvardi MK, Day DA: Electrogenic ATPase activity on the peribacteroid membrane of soybean (Glycine max L.) root nodules. Plant Physiol 90: 982–987 (1989).

    Google Scholar 

  61. Vance CP, Griff SM: The molecular biology of N metabolism, In: Dennis DT, Turpia DH (eds) Plant Physiology, Biochemistry and Molecular Biology, pp. 373–388. Longman Scientific and Technical, Burnt Mill, Harlow (1990).

    Google Scholar 

  62. Vera-Estrella R, Barkla BJ, Higgins VJ, Blumwald E: Plant defense response to fungal pathogens. Activation of host-plasma membrane H+-ATPase by elicitor-induced enzyme dephosphorylation. Plant Physiol 104: 209–215 (1994).

    Google Scholar 

  63. Villalba JM, Lützelschwab M, Serrano R: Immunocytolocalization of plasma membrane H+-ATPase in maize coleoptiles and enclosed leaves. Planta 185: 458–461 (1991).

    Google Scholar 

  64. Villalba JM, Palmgren MG, Berberian GE, Ferguson C, Serrano R: Functional expression of plant plasma membrane H+-ATPase in yeast endoplasmic reticulum. J Biol Chem 267: 12341–12349 (1992).

    Google Scholar 

  65. Wada M, Takano M, Kasamo K: Nucleotide sequence of a complementary DNA encoding plasma membrane H+-ATPase from rice (Oryza sativa L.). Plant Physiol 99: 794–795 (1992).

    Google Scholar 

  66. Wimmers LE, Ewing NN, Bennet AB: Higher plant Ca2+-ATPase: primary structure and regulation of mRNA abundance by salt. Proc Natl Acad Sci USA 89: 9205–9209 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, F., Perez-Castiñeira, J.R., Villalba, J.M. et al. Localization of plasma membrane H+-ATPase in nodules of Phaseolus vulgaris L.. Plant Mol Biol 32, 1043–1053 (1996). https://doi.org/10.1007/BF00041388

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041388

Key words

Navigation