Skip to main content
Log in

Oxygen consumption of Astyanax fasciatus (Characidae, Pisces): a comparison of epigean and hypogean populations

Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

The standard and routine oxygen consumptions of Astyanax fasciatus from one surface population (Rio Teapao) and three cave populations (Chica, Micos and Pachon caves: ‘sAnoptichthys jordani’, the ‘Micosfish’ and ‘Anoptichthys antrobius’) were determined individually over 24 hours by the use of a flow-through respirometer and polarographic oxygen electrodes. The phylogenetically oldest Pachon fish had a significantly lower standard metabolic rate (0.230 ± 0.036 mg O2 g-1 h-1) than the epigean Teapao fish, the hybrid Chica fish and the phylogenetically younger Micos fish (0.314 ± 0.081 mg O2g--1h-1, 0.284 ± 0.048 mg O2g-1h-1, 0.277 ± 0.063 mg O2g-1h-1). No significant differences could be determined among the latter three populations. A significant difference in routine metabolic rate existed only between the Pachon fish (0.309 ± 0.0.56 mg O2g-1h-1) and the Teapao fish (0.415 ± 0.071 mg O2g-1h-1). The Chica fish (0.356 ± 0.084 mg O2g-1h-1) and the Micos fish (0.355 ± 0.080 mg O2 g-1h-1) could not be separated from either the Teapao or the Pachon fish, but a decreasing trend from the surface population through the Chica and the Micos to the Pachon population was obvious. During a starvation period of 29 days the metabolic rate of epigean Teapao and hypogean Pachon fish decreased significantly by 32.5% and 34.8% (standard oxygen consumption rate) and 27.5% and 28.2% (routine oxygen consumption rate), respectively. Body mass loss during the starvation period was 16.3% for the Teapao fish and 9.5% for the Pachon fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References cited

  • Alvarez, J. 1946. Revision del genero Anoptichthys con descripcion de una especie nueva (Pisces, Characidae). An. Esc. Nac. Cien. Biol. Mexico 4: 280–282.

    Google Scholar 

  • Avise, J.C. & R.K. Selander. 1972. Evolutionary genetics of cave-dwelling fishes of the genus Astyanax. Evolution 26: 1–19.

    Google Scholar 

  • Barr, T.C. Jr. 1968. Cave ecology and the evolution of troglobites. pp. 35–102. In: T. Dobzhansky, M.K. Hecht & W.G. Steere (ed.) Evolutionary Biology, Vol. 2, North Holland Publ. Comp., New York.

  • Breder, C.M., Jr. 1942. Descriptive ecology of La Cueva Chica, with especial reference to the blind fish Anoptichthys. Zoologica (N.Y.) 27: 7–16.

    Google Scholar 

  • Breder, C.M.Jr. 1943. Apparent changes in phenotypic ratios of the characin at the type locality of Anoptichthys jordani Hubbs & Innes. Copeia 1943: 26–33.

  • Burbanck, W.D., J.P. Edwards & M.P. Burbanck. 1948. Toleration of lowered oxygen tension by cave and stream crayfish. Ecology 29: 36–367.

    Google Scholar 

  • Burchards, H., A. Dölle & J. Parzefall. 1985 Aggressive behavior of an epigean population of Asiyanax mexicanus (Characidae, Pisces) and some observations on three subterenean population Behav. Proc. 11: 225–235.

    Google Scholar 

  • Caine, E.A. 1978. Comparative ecology of epigean and hypogean crayfish (Crustacea: Cambaridae) from Northwestern Florida. Amer. Midi. Nat. 99: 315–329.

    Google Scholar 

  • Cope, E.D. 1894. On the fishes obtained by the naturalist expedition in Rio Grande du Sol. Proc. Amer. Philos. Sec. 33: 89.

    Google Scholar 

  • Craig, J.F. 1985. Aging in fish. Can. J. Zool. 63: 1–8.

    Google Scholar 

  • Culver, D.C. 1982. Cave life. Evolution and ecology. Harvard University Press, Cambridge. 189 pp.

    Google Scholar 

  • Culver, D.C. & T.L. Poulson. 1971. Oxygen consumption and activity in closely related amphipod populations from cave and surface habitats. Amer. Midi. Nat. 85: 74–84.

    Google Scholar 

  • Cuvier, G. 1819. Sur les poissons du sous-genre Hydrocyon, sur deux especes de Chalceus, sur trois nouvelles especes de Serrasalmes, et sur l"Argentina glossodonta de Forskahl, qui est l"Albula gonorhynchus de Bloch. Mem. Mus. Hist. Nat., Paris 5: 351–379.

    Google Scholar 

  • Dérouet, L. 1949. Comparaison des échanges respiratoires chez Gammarus pulex L. et Niphargus virei Chevreux. C.R. Acad. Sci. Paris. 228: 1054–1055.

    Google Scholar 

  • Dérouet, L. 1952. Influence des variations de salinité du milieu extérieur sur des crustacés cavernicoles et épigés. I. Etude de l"intensité des echanges respiratoires. C.R. Acad. Sci. Paris 234: 473–475.

    Google Scholar 

  • Dérouet, L. 1953a. Métabolisme comparé de deux araignés, l"un troglophile, l"autre epigé obscuricole. Influence de variation brusques de temperature et d"humidité. Publ. Prem. Congr. Int. Spéléol. 3: 237–240.

    Google Scholar 

  • Dérouet, L. 1953b. Etude compare du métabolisme respiratoire chez certaines éspèces de crustacés cavernicoles et épigé. Notes Biospéléol. 8: 103–109.

    Google Scholar 

  • Dickson, G.W. & R. Franz. 1980. Respiration rates, ATP turn-over and adenylate energy charge in excised gills of surface and cave crayfish. Comp. Biochem. Physiol. 65A: 375–379.

    Google Scholar 

  • Dresco-Dérouer., L. 1959. Contribution a l"étude de la biologie de deux crustacés aquatiques cavernicoles: Caecosphaeroma burgundum et Niphargus orcinus virei Chevreux. Vie et Milieu 10: 321–346.

    Google Scholar 

  • Dresco-Dérouet, L. 1960. Etude biologique comparée de quelques éspèces d"araignés lucicoles et troglophiles. Arch. Zool. Expér. Gén. 98: 271–354.

    Google Scholar 

  • Dresco-Dérouer, L. 1967. Biologie et métabolisme respiratoire d"Ischyropsabs luteipes Simon (Opiliones) adulte, au laboratoire. Ann. Spéléol. 22: 537–541.

    Google Scholar 

  • Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11: 1–12.

    Google Scholar 

  • Eberly, W. 1960. Competition and evolution in cave crayfishes of Southern Indiana. Syst. Zool. 9: 29–32.

    Google Scholar 

  • Eigenmann, C.H. 1909. Cave vertebrates of America. A study in degenerative evolution. Carnegie Inst. Wash. Publ. 104. 241 pp.

  • Erckens, W. 1981.1. Analyse von Versuchen zur Erforschung der Grundlagen der tagesperiodischen Aktivitätsverteilung einer ober- and einer unterirdischen Population des Astyanax mexicanus (Characidae, Pisces). Ph.D. Thesis, University Münster, Münster. 110 pp.

  • Erckens, W. 1981b. The activity controlling time-system in epigean and hypogean populations of Astyanax mexicanus (Characidae, Pisces). Proc. 8th. Int. Congr. Speleol. 2: 796–797.

    Google Scholar 

  • Franz, R. 1978. Ecological strategies of closely-related surface and troglobitic Florida crayfishes. Bull. Ecol. Soc. Amer. 59: 70.

    Google Scholar 

  • Freyre, L.R., O.H. Padin & A.M. Denegri. 1982. Metabolismo energetico de peces dulceaguicolas. 3. Astyanax eigenmanniorum (Cope, 1894). Limnobios 2: 342–348.

    Google Scholar 

  • Fry, F.E.J. 1957. The aquatic respiration of fish. pp. 1–63. In: M.E. Brown (ed.) The Physiology of Fishes, Vol. 1, Academic Press, New York.

  • Gal, J. 1903. Niphargus et Caecosphaeroma. Observations physiologiques. Bull. Sci. Nat. Nimes 31: 48–51.

    Google Scholar 

  • Ginet, R. 1960. Ecologie, éthologie et biologic de Niphargus. Ann. Spéléol. 15: 127–377.

    Google Scholar 

  • Hadley, N.F., G.A. Ahearn & F.G. Howarth. 1981. Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. J. Arachnol. 9: 215–222.

    Google Scholar 

  • Heusner, A.A. 1984. Biological similitude: statistical and functional relationship in comparative physiology. Amer. J. Physiol. 246: 839–845.

    Google Scholar 

  • Heuts, M.J. 1951. Ecology, variation and adaptation of the blind cave fish Caecobarbus geertsi Blgr. Ann. Soc. Roy. Zool. Belg. 82: 155–230.

    Google Scholar 

  • Hubbs, C.L. & W.T. Innes. 1936. The first known blind fish of the family Characidae: a new genus from Mexico. Occ. Pap. Mus. Zool. Univ. Michigan 342: 1–7.

    Google Scholar 

  • Hüppop, K. 1986. The role of metabolism in the evolution of cave animals. Bull. Nat. Speleol. Soc. (in press).

  • Jegla, T. C. 1964. Studies of the eyestalk, metabolism, and molting and reproductive cycles in a cave crayfish. Ph.D. Thesis University of Illinois, De Kalb. 137 pp.

  • Kamler, E. 1969. A comparison of the closed-bottle and flowing-water methods for measurement of respiration in aquatic invertebrates. Pol. Arch. Hydrobiol. 16: 31–49.

    Google Scholar 

  • Kausch, H. 1968. Der Einfluß der Spontanaktivität auf die Stoffwechselrate junger Karpfen (Cyprinus carpio L.) im Hunger and bei Fütterung. Arch. Hydrobiol./Suppl. 33: 263–330.

    Google Scholar 

  • Kosswig, C. 1960. Zur Phylogenese sogenannter Anpassungsmerkmale bei Höhlentieren. Int. Rev. Ges. Hydrobiol. 45: 493–512.

    Google Scholar 

  • Kosswig, C. 1967. Über das Tempo evolutiver Prozesse. Zool. Beitr. N.F. 13: 441–450.

    Google Scholar 

  • Kramer, C.Y. 1956. Extension of multiple range tests to group means with unequal numbers of replications. Biometrics 12: 307–310.

    Google Scholar 

  • Mathieu, J. 1980. Activité locomotrice et métabolisme respiratoire a 11° C de l"amphipode troglobie Niphargus rhenorhodanensis Schellenberg, 1937. Crustaceana (Suppl.) 6: 160–169.

    Google Scholar 

  • Mitchell, R.W. 1969. A comparison of temperate and tropical cave communities. Southwestern Naturalist 14: 73–88.

    Google Scholar 

  • Mitchell, R.W., W.H. Russell & W.R. Elliott. 1977. Mexican eyeless characin fishes, genus Astyanax: environment, distribution and evolution. Spec. Publ. Mus. Texas Techn. University 12: 1–89.

    Google Scholar 

  • Myers, G.S. 1966. Derivation of the freshwater fish fauna of Central America. Copeia 1966: 766–773.

  • Parzefall, J. 1982. Sexual and aggressive behaviour in cave animals. pp. 179–195. In: G. Roth (ed.) Environmental Adaptation and Evolution, Gustav Fischer Verlag, Struttgart.

    Google Scholar 

  • Parzefall, J. 1983. Field observation in epigean and cave populations of the Mexican characid Astyanax mexicanus (Pisces, Characidae). Mem. Speleol. 10: 171–176.

    Google Scholar 

  • Parzefall, J. 1984a. Regressive Evolution und Verhalten von Höhlentieren. Z. Zool. Syst. Evolutionsforschung Beih. 3: 26–35.

    Google Scholar 

  • Parzefall, J. 1984b. Genetisch bedingte Verhaltensänderungen bei Höhlentieren und ihren oberirdischen Vorfahren. Mitt. Hamb. Zool. Mus. Inst. Ergbd. 80: 41–51.

    Google Scholar 

  • Peters, N. & G. Peters. 1966. Das Auge zweier Höhlenformen von Astyanax mexicanus Philippi (Characidae, Pisces). Wilh. Roux'Arch. Entwicklungsmech. Org. 157: 393–414.

    Google Scholar 

  • Peters, N. & G. Peters. 1973. Genetic problems in the regressive evolution of cavernicolous fish. pp. 187–201. In: J.H. Schröder (ed.) Genetics and Mutagenesis of Fish, Springer Verlag, Heidelberg.

    Google Scholar 

  • Peters, N., A. Scholl & H. Wilkens. 1975. Der Micos-Fisch, Höhlenfisch in statu nascendi oder Bastard? Ein Beitrag zur Evolution der Höhlentiere. Z. Zool. Syst. Evolutionsforschung 13: 110–124.

    Google Scholar 

  • Poulson, T.L. 1963. Cave adaptation in amblyopsid fishes. Amer. Midl. Nat. 70: 257–290.

    Google Scholar 

  • Poulson, T.L. 1964. Animals in aquatic environments: animals in caves. pp. 749–771. In: D.B. Dill. (ed.) Handbook of Physiology, Sect. 4: Adaptation to the environment, Amer. Phys. Soc. 47.

  • Romero, A. 1983. Introgressive hybridization in the Astyanax fasciatus (Characidae, Pisces) population at La Cueva Chica. Bull. Nat. Speleol. Soc. 45: 81–85.

    Google Scholar 

  • Sachs, L. 1984. Angewandte Statistik. Springer Verlag, Heidelberg. 552 pp.

    Google Scholar 

  • Sadoglu, P. 1956. A preliminary report on the genetics of the Mexican cave characins. Copeia 1956: 113–114.

  • Schemmel, C. 1967. Vergleichende Untersuchungen an den Hautsinnesorganen ober- und unterirdisch lebender Astyanax-Formen. Z. Morph. Tiere 61: 255–316.

    Google Scholar 

  • Schemmel, C. 1974. Genetische Untersuchungen zur Evolution des Geschmacksapparates bei cavernicolen Fischen. Z. Zool. Syst. Evolutionsforschung 12: 196–215.

    Google Scholar 

  • Schemmel, C. 1980. Studies on the genetics of feeding behavior in the cave fish Astyanax mexicanus f.Anoptichthys. An example of apparent monofactorial inheritance by polygenes. Z. Tierpsychol. 53: 9–22.

    Google Scholar 

  • Schlagel, S.R. & C.M. Breder. 1947. A study of the oxygen consumption of blind and eyed characins in light and darkness. Zoologica (N.Y.) 32: 17–27.

    Google Scholar 

  • Smit, H. 1965. Some experiments on the oxygen consumption of goldfish (Carassius auratus L.) in relation to swimming speed. Can. J. Zool. 43: 623–633.

    Google Scholar 

  • Thines, G. 1969. l"evolution regressive des poissons cavernicoles et abyssaux. Masson et Cie, Paris. 394 pp.

    Google Scholar 

  • Thines, G. & M. Piquemal. 1978. Observations sur le comportement de Lucifuga subterranea Poey (Pisces, Ophidiidae), poisson cavernicole de Cuba. Int. J. Speleol. 10: 195–203.

    Google Scholar 

  • Thines, G., F. Wolff, C. Boucquey & M. Soffié. 1965. Etude comparative de l"activité du poisson cavernicole Anoptichthys antrobius Alvarez et son ancètre épigé Astyanax mexicanus (Filippi). Ann. Soc. Roy. Zool. Belgique 96: 61–115.

    Google Scholar 

  • Troiani, D. 1954. La consommation d"oxygène de quelques gammaridae. C.R. Acad. Sci. Paris 239: 1540–1542.

    Google Scholar 

  • Verrier, M.L. 1929. Observations sur le comportement d"un poisson cavernicole: Typhlichthys osbornii Eigenmann. Bull. Mus. Hist. Nat. 1: 82–84.

    Google Scholar 

  • Wautier, J. & D. Troiani. 1960. Contribution a l"étude du metabolisme de quelques gammaridae. Ann. Station Centr. Hydr. Appl. 8: 7–50.

    Google Scholar 

  • Weingartner, D.L. 1977. Production and trophic ecology of two crayfish species cohabiting an Indiana cave. Ph.D. Thesis, University of Michigan, Ann Arbor. 348 pp.

  • Wilkens, H. 1970a. Beiträge zur Degeneration des Auges bei Cavernicolen, Genzahl und Manifestationsart. Z. Zool. Syst. Evolutionsforschung 8: 1–47.

    Google Scholar 

  • Wilkens, H. 1970b. Der Bau des Auges cavernicoler Sippen von Astyanax fasciatus (Characidae, Pisces). Beitrag zur Problematik degenerativer Evolutionsprozesse. Wilh. Roux' Arch. Entwicklungsmech. Org. 166: 54–75.

    Google Scholar 

  • Wilkens, H. 1971. Genetic interpretation of regressive evolutionary processes: studies on hybrid eyes of two Astyanax cave populations (Characidae, Pisces). Evolution 25: 530–544.

    Google Scholar 

  • Wilkens, H. 1972a. Über Präadaptation für das Höhlenleben, untersucht am Laichverhalten ober- and unterirdischer Populationen des Astyanax mexicanus (Pisces). Zool. Anz. 188: 1–11.

    Google Scholar 

  • Wilkens, H. 1972b. Zur phylogenetischen Rückbildung des Auges Cavernicoler: Untersuchungen an Anoptichthys jordani (= Astyanax mexicanus, Characidae, Pisces). Ann. Spéléol. 27: 411–432.

    Google Scholar 

  • Wilkens, H. 1973. Über das phylogenetische Alter von Höhlentieren. Untersuchungen über die cavernicole Süßwasser-fauna Yucatans. Z. Zool. Syst. Evolutionsforschung 11: 49–60.

    Google Scholar 

  • Wilkens, H. 1976. Genotypic and phenotypic variability in cave animals. Studies on a phylogenetically young population of Astyanax mexicanus (Filippi) (Characidae, Pisces). Ann. Speleol. 31: 137–148.

    Google Scholar 

  • Wilkens, H. 1977. Die Rudimentation des Rumpfkanals bei cavernicolen Populationen des Astyanax (Characidae, Pisces). Experientia 33: 604–605.

    Google Scholar 

  • Wilkens, H. 1980. Prinzipien der Manifestation polygener Systeme. Z. Zool. Syst. Evolutionsforschung 18: 103–111.

    Google Scholar 

  • Wilkens, H. 1984. Zur Evolution von Polygensystemen, untersucht an ober- and unterirdischen Populationen des Astyanax mexicanus (Characidae, Pisces). Z. Zool. Syst. Evolutionsforschung Beih. 3: 55–71.

    Google Scholar 

  • Wilkens, H. & J. Burns 1972. A new Anoptichthys cave population (Characidae, Pisces). Ann. Spéléol. 27: 263–270.

    Google Scholar 

  • Wilkens, H. & K. Hüppop. 1986. Sympatric speciation in cave fishes? Studies on a mixed population of epi- and hypogean Astyanax (Characidae, Pisces). Z. Zool. Syst. Evolutionsforschung. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüppop, K. Oxygen consumption of Astyanax fasciatus (Characidae, Pisces): a comparison of epigean and hypogean populations. Environ Biol Fish 17, 299–308 (1986). https://doi.org/10.1007/BF00001496

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00001496

Keywords

Navigation