Skip to main content

Hole Injection and Hole Transfer through DNA: The Hopping Mechanism

  • Chapter
Book cover Long-Range Charge Transfer in DNA I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 236))

Abstract

Hole injection into a guanine of DNA, and hole transfer between the DNA guanines were studied. The reactions were performed in the ground state using a carbohydrate radical cation whose precursor is site-selectively incorporated into the DNA. For the charge injection step the influence of the distance, the energy difference of donor and acceptor, and the bridge were measured. The guanine radical cation , generated in the injection step, triggered long distance charge transfer through DNA, as measured by the water trapping products. It turned out that the guanines are the charge carriers and, if the distance between the guanines is long, adenines also carry the positive charge. Therefore, the positive charge migrates through the DNA over long distances in a multistep hopping process . Trapping of the positive charge at the DNA bases either by nucleophilic attack or by proton transfer to the surrounding water stops the hole transfer through DNA. This can be induced, for example, by mismatches of the G:C base pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marx A, Erdmann P, Senn M, Körner S, Jungo T, Petretta M, Imwinkelried P, Dussy A, Kulicke KJ, Macko L, Zehnder M, Giese B (1996) Helv Chim Acta 79:1980

    Google Scholar 

  2. Giese B, Dussy A, Meggers E, Petretta M, Schwitter U (1997) J Am Chem Soc 119:11130

    Google Scholar 

  3. Meggers E, Dussy A, Schäfer T, Giese B (2000) Chem Eur J 6:485

    Google Scholar 

  4. Meggers E, Kusch D, Spichty M, Wille U, Giese B (1998) Angew Chem Int Ed 37:460

    Google Scholar 

  5. Meggers E (1999) PhD Thesis, University of Basel

    Google Scholar 

  6. Giese B, Imwinkelried P, Petretta M (1994) Synlett 1003

    Google Scholar 

  7. Giese B, Biland A (2002) Chem Commun 667

    Google Scholar 

  8. Steenken S, Jovanovic SV (1997) J Am Chem Soc 119:12950

    Google Scholar 

  9. Marcus RA (1956) J Chem Phys 24:966

    Google Scholar 

  10. Nakatani R, Dohno C, Saito I (2000) J Am Chem Soc 122:5893

    Google Scholar 

  11. Davis WB, Naydenova I, Haselsberger R, Ogrodnik A, Giese B, Michel-Beyerle ME (2000) Angew Chem Int Ed 39:3649

    Google Scholar 

  12. Hess S, Götz M, Davis WB, Michel-Beyerle ME (2001) J Am Chem Soc 123:10046

    Google Scholar 

  13. Giese B (2000) Acc Chem Res 33:631

    Google Scholar 

  14. Meggers E, Michel-Beyerle ME, Giese B (1998) J Am Chem Soc 120:12950

    Google Scholar 

  15. Giese B, Spichty M (2000) Chem Phys Chem 1:195

    Google Scholar 

  16. Wessely S (2001) PhD Thesis, University of Basel

    Google Scholar 

  17. Giese B, Amaudrut J, Köhler AK, Spormann M, Wessely S (2001) Nature 412:318

    Google Scholar 

  18. Giese B, Wessely S (2000) Angew Chem Int Ed 39:3490

    Google Scholar 

  19. Giese B, Kendrick T (2002) Chem Commun 2016

    Google Scholar 

  20. Li X, Cai Z, Sevilla MD (2002) J Phys Chem A 106:9345

    Google Scholar 

  21. Segal D, Nitzan A, Davis WB, Wasielewski MR, Ratner MA (??) J Phys Chem B 104:3817

    Google Scholar 

  22. Giese B, Wessely S (2001) Chem Commun 2108

    Google Scholar 

  23. Steenken S (1997) Biol Chem 378:1293

    Google Scholar 

Download references

Acknowledgement

Our work was supported by the Swiss National Science Foundation and the Volkswagen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Giese .

Editor information

G.B. Schuster

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giese, B. (2004). Hole Injection and Hole Transfer through DNA: The Hopping Mechanism. In: Schuster, G. (eds) Long-Range Charge Transfer in DNA I. Topics in Current Chemistry, vol 236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b94410

Download citation

  • DOI: https://doi.org/10.1007/b94410

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20127-4

  • Online ISBN: 978-3-540-39880-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics