Skip to main content

Nutrient, Oxygen and Carbon Ratios, CO2 Sequestrationand Anthropogenic Forcing in the Mediterranean Sea

  • Chapter
  • First Online:
The Mediterranean Sea

Part of the book series: Handbook of Environmental Chemistry ((HEC5,volume 5K))

Abstract

The climate and the environment, together with present tectonic morphology, constitute main constraints for the Mediterranean Sea geochemistry. The resulting homogeneity of deep water characteristics (temperature and salinity) and concentrations (nutrients, oxygen, alkalinity, total inorganic carbon) allow estimation of carbon, oxygen and nutrient ratios, new production and carbon sequestration at the basin scale. In the eastern Mediterranean, the C/P and O2/P molar ratios are about 200% and the N/P ratio 50% higher than the classical Redfield ratios (RR) [1]. Total new production, determined either from the carbon budget or from oxygen and nutrient ratios, is consequently twice as great as previous estimates based on the phosphate budget and RR. Anomalies in nutrient, oxygen and carbon ratios probably denote a link between marine dynamics, the continental environment (phosphate and silicate inputs) and the marine ecosystem with predominating diatoms, nitrogen fixation and phosphate limitation. Over the twentieth century, the determined CO2 sequestration was mainly derived from marine dynamics (winter deep water formation and Mediterranean deep outflow towards the Atlantic intermediate waters), while the biological pump (new production) only represented about 3% of the total sequestration. Nevertheless, the recent increase of phosphorus pollution by anthropogenic inputs to the sea favours biological CO2 uptake, together with an appreciable sequestration of the atmospheric CO2 in the early twenty-first century, and an ecosystem shift from dominant diatoms to non-siliceous species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Redfield AC, Ketchum BH, Richards A (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The sea. Interscience, New York, pp 26–77

    Google Scholar 

  2. Pollak MJ (1952) J Mar Res 10:128

    Google Scholar 

  3. Wüst G (1961) J Geophys Res 66:3261

    Article  Google Scholar 

  4. MEDOC Group (1970) Nature 227:1037

    Article  Google Scholar 

  5. Bethoux JP, Gentili B (1999) J Mar Syst 20:33

    Article  Google Scholar 

  6. Bethoux JP, Gentili B, Morin P, Nicolas E, Pierre C, Ruiz-Pino D (1999) Prog Oceanogr 44:131

    Article  Google Scholar 

  7. Bethoux JP, Morin P, Ruiz-Pino D (2002) Deep-Sea Res II 49:2007

    Article  CAS  Google Scholar 

  8. Smethie WM, Fine RA (2001) Deep-Sea Res I 48:189

    Article  CAS  Google Scholar 

  9. Bethoux JP, Durieu de Madron X, Nyffeler F, Tailliez D (2002) J Mar Syst 33–34:117

    Article  Google Scholar 

  10. Bethoux JP, Morin P, Chaumery C, Connan O, Gentili B, Ruiz-Pino D (1998) Mar Chem 63:155

    Article  CAS  Google Scholar 

  11. Weiss RF, Broecker WS, Craig H, Spencer HD (1983) Hydrographic data 1977–1978. Technical Report 5, NSF, Washington, DC, GEOSECS Indian Ocean Expedition

    Google Scholar 

  12. Roether W, Well R (2001) Deep-Sea Res I 48:1535

    Article  CAS  Google Scholar 

  13. Brunet C, Poisson A, Lebel J, Porot V (1984) Alcalinité totale, carbone inorganique, calcium, densité. In: Campagne MEDIPROD IV, 15 Octobre–17 Novembre 1981. Résultats des campagnes à la mer, vol. 26. CNEXO, Brest, pp 89–93

    Google Scholar 

  14. Perez FF, Estralda M, Salat J (1986) Invest Pesq 50:333

    CAS  Google Scholar 

  15. Copin-Montégut C (1993) Global Biogeochem Cycles 7:915

    Article  Google Scholar 

  16. Begovic M, Copin-Montégut C (2002) Deep-Sea Res II 49:2031

    Article  CAS  Google Scholar 

  17. Copin-Montégut C, Bégovic M (2002) Deep-Sea Res II 49:2049

    Article  Google Scholar 

  18. Mémery L, Lévy M, Vérant S, Merlivat L (2002) Deep-Sea Res II 49:2067

    Article  Google Scholar 

  19. Bethoux JP (1980) Oceanol Acta 3:79

    Google Scholar 

  20. Astraldi M, Gasparini GP, Sparnocchia S, Moretti M, Sansone E (1996) Bull Inst Océanogr Monaco 17:95

    Google Scholar 

  21. Bryden HL, Kinder TH (1991) Deep-Sea Res 38S:445

    Google Scholar 

  22. McGill DA (1969) Commun Int Explor Sci Mer Médit Rapp PV Réunions 18:737

    Google Scholar 

  23. Coste B, Le Corre P, Minas HJ (1988) Deep-Sea Res 35:767

    Article  CAS  Google Scholar 

  24. Helmer R (1977) Ambio 6:312

    Google Scholar 

  25. UNEP (1988) Technical Report UNEP Rac/Blue Plan, p 94

    Google Scholar 

  26. Moutin T (2000) Océanis 36-4

    Google Scholar 

  27. Bethoux JP, Morin P, Madec C, Gentili B (1992) Deep-Sea Res 39:1641

    Article  CAS  Google Scholar 

  28. Bethoux JP, Copin-Montégut G (1986) Limnol Oceanogr 31:1353

    Article  CAS  Google Scholar 

  29. Migon C, Copin-Montégut G, Elegant L, Morelli J (1989) Oceanol Acta 12:187

    CAS  Google Scholar 

  30. Migon C, Sandroni V (1999) Limnol Oceanogr 44:1160

    Article  CAS  Google Scholar 

  31. Guerzoni S et al (1999) Prog Oceanogr 44:147

    Article  Google Scholar 

  32. Denan V, Saliot A (1990) Oceanol Acta 13:47

    Google Scholar 

  33. Coste B, Raimbault P (1993) In: Martin JM, Barth H (eds) ECC Water Pollution Research Reports 30:47

    Google Scholar 

  34. Tusseau MH, Mouchel JM (1995) In: Martin JM, Barth H (eds) ECC Water Pollution Research Reports 22:49

    Google Scholar 

  35. Marchetti R, Gaggino GF, Provini A (1988) UNESCO Reports Mar Sci 49:133

    Google Scholar 

  36. Anderson LA, Sarmiento JL (1994) Global Bio Cycles 8:65

    Article  CAS  Google Scholar 

  37. Miller AR, Tchernia P, Charnock H, MacGill DA (1970) Woods Hole Oceanographic Institution, Atlas Series 3:190

    Google Scholar 

  38. PROSOPE 2000 cruise data. http://www.obs-vlfr.fr/cd_rom_dmtt/start_frnce_jgofs.htm

  39. El-Gindy AA, Sharaf El-Din SH (1986) Oceanol Acta 9:239

    Google Scholar 

  40. Takahashi T, Broecker WS, Langer S (1985) J Geophys Res 90:690

    Google Scholar 

  41. Gervais F, Riebesell U (2001) Limnol Oceanogr 44:497

    Article  Google Scholar 

  42. Sachs JP, Repeta DJ (1999) Science 286:2485

    Article  CAS  Google Scholar 

  43. Sarmiento JL, Sundquist ET (1992) Nature 356:589

    Article  CAS  Google Scholar 

  44. IPCC (1995) Changements climatiques 1995, 2nd assess report, WMO/UNEP, p 64

    Google Scholar 

  45. Sarmiento JL, Le Quéré C (1996) Science 274:1346

    Article  CAS  Google Scholar 

  46. Keeling CD, Whorf TP (2001) SIO, University of California, http://cdiac.esd.ornl.gov/trends/co2/sio-mlo-htm

  47. Perez FF, Fraga F (1987) Mar Chem 21:169

    Article  CAS  Google Scholar 

  48. Bethoux JP (1977) Contribution à l’étude thermique de la mer Méditerranée. Thèse Etat Université Paris 6, p 201

    Google Scholar 

  49. Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations, ORNL/CDIAC-105, http://cdiac.esd.ornl.gov/oceans/co2rprt.html

    Google Scholar 

  50. Copin-Montégut G (2001) Système des carbonates, http://www.obs-vlfr.fr/~enseigne/enseignants/copin/Sydecar.pdf

  51. Copin-Montégut C (1998) Sea surface carbon dioxide in the eastern Mediterranean Sea and estimate of the air to sea CO2 flux in winter. EC MTP 3rd workshop on the variability of the Mediterranean Sea, Rhodos, Greece

    Google Scholar 

  52. IPPC (1990) Report from working group 1, third draft

    Google Scholar 

  53. UNEP (1988) Le plan bleu, résumé et orientations pour l’action. Technical Report UNEP Rac/Blue Plan, p 94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Bethoux .

Editor information

Alain Saliot

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bethoux, J.P., El Boukhary, M.S., Ruiz-Pino, D., Morin, P., Copin-Montégut, C. (2005 ). Nutrient, Oxygen and Carbon Ratios, CO2 Sequestrationand Anthropogenic Forcing in the Mediterranean Sea. In: Saliot, A. (eds) The Mediterranean Sea. Handbook of Environmental Chemistry, vol 5K. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b107144

Download citation

Publish with us

Policies and ethics