Skip to main content

Advertisement

Log in

Double-safety flexible supercapacitor basing on zwitterionic hydrogel: over-heat alarm and flame-retardant electrolyte

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Thermal runaway during the charging-discharging processes is always the safe issue of the flexible energy storage devices. However, the existed strategies are hard to maintain safety and good electrochemical performance simultaneously, as well as over heat alarm. Here, we report a thermoresponsive zwitterionic conductive natural polymer based hydrogel (sodium alginate/poly acrylic-acrylamide/NaCl, SPA) as electrolyte for the safe flexible supercapacitor to alarm and prevent the thermal runaway. The SPA hydrogel exhibited good flexibility (1578% strain and 0.24 MPa stress) and conductivity, and the assembled flexible hydrogel supercapacitor showed good electrochemical performance (specific capacities was 27.7 F g−1 at 0.8A g−1 current density) with wide working voltage ranges (1.4 V) and high energy density (7.41 Wh kg−1 at the power density of 560 W kg−1). Importantly, the SPA electrolyte possessed excellent controllable thermal responsive conductivity. The conductivity of SPA showed a sharp change below and above transition temperature up to one order of magnitude (2.05 mS cm−1 at 25 ℃, 18.21 mS cm−1 at 60 ℃). The obvious conductivity changes could be used to warn the sudden temperature raise of energy storage devices. Furthermore, SPA hydrogels also showed excellent flame retardant property, the limiting oxygen index (LOI) as high as 46%; thus, the SPA could effectively prevent the whole device from burning even in extreme situation. Combined with over-heat alarm and flame-retardant properties, a belt-and-braces strategy is provided to ensure the safety of flexible energy storage devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jiang X, Chen Y, Meng X, Cao W, Liu C, Huang Q, Naik N, Murugadoss V, Huang M, Guo Z (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191:448–470

    Article  CAS  Google Scholar 

  2. Hamers RJ (2001) Flexible electronic futures. Nature 412:489–490

    Article  CAS  Google Scholar 

  3. Wang JL, Hassan M, Liu JW, Yu SH (2018) Nanowire assemblies for flexible electronic devices: recent advances and perspectives. Adv Mater 30:1803430

    Article  Google Scholar 

  4. Liu Y, He K, Chen G, Leow WR, Chen X (2017) Nature-inspired structural materials for flexible electronic devices. Chem Rev 117:12893–12941

    Article  CAS  Google Scholar 

  5. Gu Y, Wang XW, Gu W, Wu YJ, Li T, Zhang T (2017) Flexible electronic eardrum Nano Res 10:2683–2691

    CAS  Google Scholar 

  6. Tian Y, An Y, Wei H, Wei C, Tao Y, Li Y, Xi B, Xiong S, Feng J, Qian Y (2020) Micron-sized nanoporous vanadium pentoxide arrays for high-performance gel zinc-ion batteries and potassium batteries. Chem Mater 32:4054–4064

    Article  CAS  Google Scholar 

  7. Liu C, Tian Y, An Y, Yang Q, Xiong S, Feng J, Qian Y (2022) Robust and flexible polymer/MXene-derived two dimensional TiO2 hybrid gel electrolyte for dendrite-free solid-state zinc-ion batteries. Chem Eng J 430

  8. Ge J, Wang X, Drack M, Volkov O, Liang M, Canon Bermudez GS, Illing R, Wang C, Zhou S, Fassbender J, Kaltenbrunner M, Makarov D (2019) A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat Commun 10:4405

    Article  Google Scholar 

  9. Chortos A, Liu J, Bao Z (2016) Pursuing prosthetic electronic skin. Nat Mater 15:937–950

    Article  CAS  Google Scholar 

  10. Gao Y, Yu L, Yeo JC, Lim CT (2020) Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv Mater 32:1902133

    Article  CAS  Google Scholar 

  11. Huang HL, Han L, Li JF, Fu XB, Wang YL, Yang ZL, Xu XT, Pan LK, Xu M (2020) Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor. J Mater Chem A 8:10291–10300

    Article  CAS  Google Scholar 

  12. Herbert R, Lim HR, Yeo WH (2020) Printed, Soft, Nanostructured strain sensors for monitoring of structural health and human physiology. ACS Appl Mater Interfaces 12:25020–25030

    Article  CAS  Google Scholar 

  13. Lu Y, Jiang K, Chen D, Shen GZ (2019) Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy 58:624–632

    Article  CAS  Google Scholar 

  14. Huang SY, Liu Y, Zhao Y, Ren ZF, Guo CF (2019) Flexible electronics: stretchable electrodes and their future. Adv Funct Mater 29:1805924

    Article  Google Scholar 

  15. Park HL, Lee Y, Kim N, Seo DG, Go GT, Lee TW (2020) Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv Mater 32:1903558

    Article  CAS  Google Scholar 

  16. Li Y, Zhu G, Huang H, Xu M, Lu T, Pan L (2019) A N, S dual doping strategy via electrospinning to prepare hierarchically porous carbon polyhedra embedded carbon nanofibers for flexible supercapacitors. J Mater Chem A 7:9040–9050

    Article  CAS  Google Scholar 

  17. Tyagi A, Joshi MC, Agarwal K, Balasubramaniam B, Gupta RK (2019) Three-dimensional nickel vanadium layered double hydroxide nanostructures grown on carbon cloth for high-performance flexible supercapacitor applications. Nanoscale Advances 1:2400–2407

    Article  CAS  Google Scholar 

  18. Wu C, Zhou TZ, Du Y, Dou SX, Zhang H, Jiang L, Cheng QF (2019) Strong bioinspired HPA-rGO nanocomposite films via interfacial interactions for flexible supercapacitors. Nano Energy 58:517–527

    Article  CAS  Google Scholar 

  19. Angaiah S, Murugadoss V, Arunachalam S, Panneerselvam P, Krishnan S (2018) Influence of various ionic liquids embedded electrospun polymer membrane electrolytes on the photovoltaic performance of DSSC. Eng Sci

  20. Elayappan V, Murugadoss V, Fei Z, Dyson PJ, Angaiah S (2020) Influence of polypyrrole incorporated electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibrous composite membrane electrolyte on the photovoltaic performance of dye sensitized solar cell. Eng Sci

  21. Wang Z, He S, Nguyen V, Riley KE (2020) Ionic liquids as green solvent and/or electrolyte for energy interface. Eng Sci

  22. Srivastava M, Surana K, Singh PK, Singh RC (2021) Nickel oxide embedded with polymer electrolyte as efficient hole transport material for perovskite solar cell. Eng Sci

  23. Yang X, Tian Y, Wu B, Jia W, Hou C, Zhang Q, Li Y, Wang H (2021) High‐performance ionic thermoelectric supercapacitor for integrated energy conversion‐storage. Energy Environ Mater

  24. Liu C, Xu D, Weng J, Zhou S, Li W, Wan Y, Jiang S, Zhou D, Wang J, Huang Q (2020) Phase change materials application in battery thermal management system: a review. Materials 13:4622

    Article  CAS  Google Scholar 

  25. Liu C, Zheng K, Zhou Y, Zhu K, Huang Q (2021) Experimental thermal hazard investigation of pressure and EC/PC/EMC mass ratio on electrolyte. Energies 14:2511

    Article  CAS  Google Scholar 

  26. Liu C, Huang Q, Zheng K, Qin J, Zhou D, Wang J (2020) Impact of lithium salts on the combustion characteristics of electrolyte under diverse pressures. Energies 13:5373

    Article  CAS  Google Scholar 

  27. Wang QS, Ping P, Zhao XJ, Chu GQ, Sun JH, Chen CH (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224

    Article  CAS  Google Scholar 

  28. Kummer A, Varga T (2019) Completion of thermal runaway criteria: two new criteria to define runaway limits. Chem Eng Sci 196:277–290

    Article  CAS  Google Scholar 

  29. Tan L, Wei C, Zhang Y, An Y, Xiong S, Feng J (2022) Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem Eng J 431:134277

    Article  CAS  Google Scholar 

  30. Kim GH, Pesaran A, Spotnitz R (2007) A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources 170:476–489

    Article  CAS  Google Scholar 

  31. Karthikeyan Kumaresan GS, White RE (2008) Thermal model for a Li-ion cell. J Electrochem Soc 155:A164–A171

    Article  Google Scholar 

  32. Guo GF, Long B, Cheng B, Zhou SQ, Xu P, Cao BG (2010) Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. J Power Sources 195:2393–2398

    Article  CAS  Google Scholar 

  33. Orendorff CJ, Roth EP, Nagasubramanian G (2011) Experimental triggers for internal short circuits in lithium-ion cells. J Power Sources 196:6554–6558

    Article  CAS  Google Scholar 

  34. Leising RA, Palazzo MJ, Takeuchi ES, Takeuchi KJ (2001) Abuse testing of lithium-ion batteries - characterization of the overcharge reaction of LiCoO2/graphite cells. J Electrochem Soc 148:A838–A844

    Article  CAS  Google Scholar 

  35. Xu D, Huang G, Guo L, Chen Y, Ding C, Liu C (2021) Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste. Adv Compos Mater

  36. Larsson F, Mellander BE (2014) Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells. J Electrochem Soc 161:A1611–A1617

    Article  CAS  Google Scholar 

  37. Na RQ, Lu N, Zhang SL, Huo GZ, Yang YC, Zhang CY, Mu YF, Luo YC, Wang GB (2018) Facile synthesis of a high-performance, fire-retardant organic gel polymer electrolyte for flexible solid-state supercapacitors. Electrochim Acta 290:262–272

    Article  CAS  Google Scholar 

  38. Wang F, Yang H, Zhang J, Zhang P, Wang G, Zhuang X, Cuniberti G, Feng X (2018) A dual-stimuli-responsive sodium-bromine battery with ultrahigh energy density. Adv Mater 30:1800028

    Article  Google Scholar 

  39. Zhang PP, Wang JH, Sheng WB, Wang FX, Zhang J, Zhu F, Zhuang XD, Jordan R, Schmidt OG, Feng XL (2018) Thermoswitchable on-chip microsupercapacitors: one potential self-protection solution for electronic devices. Energy Environ Sci 11:1717–1722

    Article  CAS  Google Scholar 

  40. Zhao F, Bae J, Zhou X, Guo Y, Yu G (2018) Nanostructured functional hydrogels as an emerging platform for advanced energy technologies. Adv Mater 30:1801796

    Article  Google Scholar 

  41. Guo YH, Bae J, Zhao F, Yu GH (2019) Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem 1:335–348

    Article  CAS  Google Scholar 

  42. Ma S, Shi Y, Zhang Y, Zheng L, Zhang Q, Xu X (2019) All-printed substrate-versatile microsupercapacitors with thermoreversible self-protection behavior based on safe sol-gel transition electrolytes. ACS Appl Mater Interfaces 11:29960–29969

    Article  CAS  Google Scholar 

  43. Han L, Huang H, Li J, Yang Z, Zhang X, Zhang D, Liu X, Xu M, Pan L (2019) Novel zinc–iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. J Mater Chem A 7:24400–24407

    Article  CAS  Google Scholar 

  44. Hosseinzadeh H, Barghi A (2018) Synthesis of poly(AN)/poly(AA-co -AM) hydrogel nanocomposite with electrical conductivity and antibacterial properties. Polym Compos 40:2724–2733

    Article  Google Scholar 

  45. Wang LP, Ren J, Yao MQ, Yang XC, Yang W, Li Y (2014) Synthesis and characterization of self-oscillating P(AA-co-AM)/PEG semi-IPN hydrogels based on a pH oscillator in closed system. Chin J Polym Sci 32:1581–1589

    Article  CAS  Google Scholar 

  46. Papageorgiou SK, Kouvelos EP, Favvas EP, Sapalidis AA, Romanos GE, Katsaros FK (2010) Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydr Res 345:469–473

    Article  CAS  Google Scholar 

  47. Han L, Huang HL, Fu XB, Li JF, Yang ZL, Liu XJ, Pan LK, Xu M (2020) A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chem Eng J 392:123733

    Article  CAS  Google Scholar 

  48. Tai Z, Wei J, Zhou J, Liao Y, Wu C, Shang Y, Wang B, Wang Q (2020) Water-mediated crystallohydrate-polymer composite as a phase-change electrolyte. Nat Commun 11:1843

    Article  CAS  Google Scholar 

  49. Guo QY, Ren SY, Wang JY, Li Y, Yao ZY, Huang H, Gao ZX, Yang SP (2020) Low field nuclear magnetic sensing technology based on hydrogel-coated superparamagnetic particles. Anal Chim Acta 1094:151–159

    Article  CAS  Google Scholar 

  50. Sun NN, Ji R, Zhang FF, Song XL, Xie A, Liu JL, Zhang M, Niu LL, Zhang SP (2020) Structural evolution in poly(acrylic-co-acrylamide) pH-responsive hydrogels by low-field NMR. Mater Today Commun 22:100748

    Article  CAS  Google Scholar 

  51. Ozel B, Uguz SS, Kilercioglu M, Grunin L, Oztop MH (2017) Effect of different polysaccharides on swelling of composite whey protein hydrogels: a low field (LF) NMR relaxometry study. J Food Process Eng 40:e12465

    Article  Google Scholar 

  52. Wei J, Zhou J, Su S, Jiang J, Feng J, Wang Q (2018) Water-deactivated polyelectrolyte hydrogel electrolytes for flexible high-voltage supercapacitors. Chemsuschem 11:3410–3415

    Article  CAS  Google Scholar 

  53. Zhao DW, Chen CJ, Zhang Q, Chen WS, Liu SX, Wang QW, Liu YX, Li J, Yu HP (2017) High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv Energy Mater 7:1700739

    Article  Google Scholar 

  54. Wang S, Pei B, Zhao X, Dryfe RA (2013) Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy 2:530–536

    Article  CAS  Google Scholar 

  55. Xu Y, Lin Z, Huang X, Liu Y, Huang Y, Duan X (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7:4042–4049

    Article  CAS  Google Scholar 

  56. Park JH, Rana HH, Lee JY, Park HS (2019) Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. J Mater Chem A 7:16962–16968

    Article  CAS  Google Scholar 

  57. Fu XD, Li T, Qi FL, Zhang S, Wen JX, Shu WL, Luo P, Zhang R, Hu SF, Liu QT (2020) Designing high electrochemical surface area between polyaniline and hydrogel polymer electrolyte for flexible supercapacitors. Appl Surf Sci 507:145135

    Article  CAS  Google Scholar 

  58. Lin T, Shi M, Huang F, Peng J, Bai Q, Li J, Zhai M (2018) One-pot synthesis of a double-network hydrogel electrolyte with extraordinarily excellent mechanical properties for a highly compressible and bendable flexible supercapacitor. ACS Appl Mater Interfaces 10:29684–29693

    Article  CAS  Google Scholar 

  59. Ilmain F, Tanaka T, Kokufuta EJN (1991) Volume transition in a gel driven by hydrogen bonding. Nature 349:400–401

    Article  CAS  Google Scholar 

  60. Xu Y, Ghag O, Reimann M, Sitterle P, Chatterjee P, Nofen E, Yu H, Jiang H, Dai LL (2017) Development of visible-light responsive and mechanically enhanced smart UCST interpenetrating network hydrogels. Soft Matter 14:151–160

    Article  Google Scholar 

  61. Wang QF, Li SM, Wang ZY, Liu HZ, Li CJ (2009) Preparation and characterization of a positive thermoresponsive hydrogel for drug loading and release. J Appl Polym Sci 111:1417–1425

    Article  CAS  Google Scholar 

  62. Hua L, Xie M, Jian Y, Wu B, Chen C, Zhao C (2019) Multiple-responsive and amphibious hydrogel actuator based on asymmetric UCST-type volume phase transition. ACS Appl Mater Interfaces 11:43641–43648

    Article  CAS  Google Scholar 

  63. Lu X, Liu H, Murugadoss V, Seok I, Huang J, Ryu JE, Guo Z (2020) Polyethylene glycol/carbon black shape-stable phase change composites for peak load regulating of electric power system and corresponding thermal energy storage. Engineered Science 9:25–34

    CAS  Google Scholar 

  64. Sheng M, Wu L, Li X, Yan H, Lu X, Xu Y, Li Y, Tong Y, Qu J (2022) Preparation and Characterization of super-toughened poly(lactic acid)/cross-linked polyurethane blends via one-step dynamic vulcanization. Eng Sci 19

  65. Liu J, Yu Z, He H, Wang Y, Zhao Y (2021) A novel flame-retardant composite material based on calcium alginate/poly (vinyl alcohol)/graphite hydrogel: thermal kinetics, combustion behavior and thermal insulation performance. Cellulose 28:8751–8769

    Article  CAS  Google Scholar 

  66. Kabir II, Sorrell CC, Mofarah SS, Yang W, Yuen ACY, Nazir MT, Yeoh GH (2020) Alginate/polymer-based materials for fire retardancy: synthesis, structure, properties, and applications. Polym Rev 61:357–414

    Article  Google Scholar 

  67. Wang F, Cai M, Yan L (2021) Effect of poly(acrylamide-acrylic acid) on the fire resistance and anti-aging properties of transparent flame-retardant hydrogel applied in fireproof glass. Polymers (Basel) 13:3668

    Article  CAS  Google Scholar 

  68. Ye TT, Li DH, Liu HL, She XL, Xia YZ, Zhang SC, Zhang HW, Yang DJ (2018) Seaweed biomass-derived flame-retardant gel electrolyte membrane for safe solid-state supercapacitors. Macromolecules 51:9360–9367

    Article  CAS  Google Scholar 

  69. Guan JP, Chen GQ (2008) Flame resistant modification of silk fabric with vinyl phosphate. Fiber Polym 9:438–443

    Article  CAS  Google Scholar 

  70. Liu Y, Zhao JC, Zhang CJ, Guo Y, Zhu P, Wang DY (2016) Effect of manganese and cobalt ions on flame retardancy and thermal degradation of bio-based alginate films. J Mater Sci 51:1052–1065

    Article  CAS  Google Scholar 

  71. Wang YT, Zhao HB, Degracia K, Han LX, Sun H, Sun M, Wang YZ, Schiraldi DA (2017) Green approach to improving the strength and flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating biobased gelatin. ACS Appl Mater Interfaces 9:42258–42265

    Article  CAS  Google Scholar 

  72. Wei DD, Dong CH, Liu J, Zhang Z, Lu Z (2019) A novel cyclic polysiloxane linked by guanidyl groups used as flame retardant and antimicrobial agent on cotton fabrics. Fiber Polym 20:1340–1346

    Article  CAS  Google Scholar 

  73. Xu S, Li SY, Zhang M, Zeng HY, Wu K, Tian XY, Chen CR, Pan Y (2020) Fabrication of green alginate-based and layered double hydroxides flame retardant for enhancing the fire retardancy properties of polypropylene. Carbohydr Polym 234:115891

    Article  CAS  Google Scholar 

  74. Zhang Y, Xiong Z, Ge H, Ni L, Zhang T, Huo S, Song P, Fang Z (2020) Core–shell bioderived flame retardants based on chitosan/alginate coated ammonia polyphosphate for enhancing flame retardancy of polylactic acid. ACS Sustain Chem Eng 8:6402–6412

    Article  CAS  Google Scholar 

  75. Zhang D, Williams BL, Santos VH, Lofink BJ, Becher EM, Partyka A, Peng X, Sun L (2020) Self-assembled intumescent flame retardant coatings: influence of pH on the flammability of cotton fabrics. Eng Sci 12:106–112

    CAS  Google Scholar 

  76. Sun J, Shi L, Song T, Sun C (2021) Flame resistance of cotton fabric finishing with N-hydroxymethylacrylamide spirophosphate. Adv Compos Mater 4:1155–1165

    Article  CAS  Google Scholar 

  77. Williams BL, Ding H, Hou Z, Paul PO, Lewis FA, Smith AT, Sun L (2021) Highly efficient polyvinyl alcohol/montmorillonite flame retardant nanocoating for corrugated cardboard. Adv Compos Mater 4:662–669

    Article  CAS  Google Scholar 

  78. Liu Y, Zhang CJ, Zhao JC, Guo Y, Zhu P, Wang DY (2016) Bio-based barium alginate film: preparation, flame retardancy and thermal degradation behavior. Carbohydr Polym 139:106–114

    Article  CAS  Google Scholar 

  79. Cao L, Liu Q, Ren J, Chen W, Pei Y, Kaplan DL, Ling S (2021) Electro-blown spun silk/graphene nanoionotronic skin for multifunctional fire protection and alarm. Adv Mater 33:2102500

    Article  CAS  Google Scholar 

  80. Liang C, Du Y, Wang Y, Ma A, Huang S, Ma Z (2021) Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv Compos Mater 4:979–988

    Article  CAS  Google Scholar 

  81. Liu Q, Yang S, Ren J, Ling SJ (2020) Flame-retardant and sustainable silk ionotronic skin for fire alarm systems. ACS Mater Lett 2:712–720

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No.21875068), Fundamental Research Funds for the Central Universities (2020ECNU-GXJC003), and Young Potential Program of Shanghai Institute of Applied Physics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailong Huang or Min Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2040 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Han, L., Fu, X. et al. Double-safety flexible supercapacitor basing on zwitterionic hydrogel: over-heat alarm and flame-retardant electrolyte. Adv Compos Hybrid Mater 5, 1876–1887 (2022). https://doi.org/10.1007/s42114-022-00497-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00497-0

Keywords

Navigation