Skip to main content
Log in

Agrobacterium rhizogenes rolA gene promotes tolerance to Fusarium oxysporum f. sp. lycopersici in transgenic tomato plants (Solanum lycopersicum L.)

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to assess the role of Agrobacterium rhizogenes rol genes on the defence response of plants to pathogens, tomato plants (Solanum lycopersicum L.) were transformed with the rolA gene. Consistently with previous descriptions of rolA-induced phenotype, insertion of this gene had a pleiotropic effect determining highly aberrant plants, with wrinkled, intensely green leaves, thick stems and small fruits often lacking seeds. Infection of transgenic plants with the phytopathogenic fungus Fusarium oxysporum f. sp. lycopersici showed the acquirement of resistance/tolerance to the pathogen as evaluated both on the primary transformants by electrolyte leakage and on the transgenic progenies by direct infection. Determination of the endogenous levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) showed a 30–35 % decrease of both phytohormones in rolA plants harbouring three copies of the transgene compared to the controls, while a significantly lower level of ABA was observed in plants with one copy of the transgene. This is the first demonstration of the direct involvement of rolA gene in plant pathogen tolerance acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

IAA:

indole-3-acetic acid

PCR:

polymerase chain reaction

RT-PCR:

reverse transcription polymerase chain reaction

References

  • Agrios GN (2005) Vascular wilts caused by ascomycetes and deuteromycetes (mitosporic fungi). In: Agrios GN (ed) Plant Pathology, 5th edn. Elsevier Academic Press, New York, pp. 522–530

    Google Scholar 

  • Altabella T, Angel E, Biondi S, Palazón J, Bagni N, Pinol MT (1995) Effect of the rol genes from Agrobacterium rhizogenes on polyamine metabolism in tobacco roots. Physiol Plant 95:479–485. doi:10.1111/j.1399-3054.1995.tb00866.x

    Article  CAS  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ebert C, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defence gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479. doi: 10.1105/tpc.104.025833

  • Arshad W, Haq I, Tahir Waheed M, Mysore KS, Mirza B (2014) Agrobacterium-mediated transformation of tomato with rolB gene results in enhancement of fruit quality and foliar resistance against fungal pathogens. PLoS ONE 9(5):e96979. doi:10.1371/journal.pone.0096979

  • Asselbergh B, Enow Achuo A, Höfte M, Van Gijsegem F (2008) Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol Plant Pathol 9:11–24. doi:10.1111/j.1364-3703.2007.00437.x

  • Audenaert K, De Meyer GB, Höfte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid dependent signaling mechanisms. Plant Physiol 128:491–501. doi:10.1104/pp.010605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baraldi R, Bertazza G, Bregoli A, Fasolo F, Rotondi A, Predieri S, Serafini-Fracassini D, Slovin JP, Cohen JD (1995) Auxins and polyamines in relation to differential in vitro root induction on microcuttings of two pear cultivars. J Plant Growth Regul 14:49–59. doi:10.1007/BF00212646

    Article  CAS  Google Scholar 

  • Barros LM, Curtis RH, Viana AA, Campos L, Carneiro M (2003) Fused RolA protein enhances beta glucoronidase activity 50-fold: implication for RolA mechanism of action. Protein Peptide Lett 10:303–311. doi:10.2174/0929866033478951

    Article  CAS  Google Scholar 

  • Ben-Hayyim G, Martin-Tanguy J, Tepfer D (1996) Changing root and shoot architecture with the rolA gene from Agrobacterium rhizogenes: interactions with gibberellic acid and polyamine metabolism. Physiol Plant 96:237–243. doi:10.1111/j.1399-3054.1996.tb00208.x

    Article  CAS  Google Scholar 

  • Bettini P, Michelotti S, Bindi D, Giannini R, Capuana M, Buiatti M (2003) Pleiotropic effect of the insertion of the Agrobacterium rhizogenes rolD gene in tomato (Lycopersicon esculentum Mill.). Theor Appl Genet 107:831–836. doi:10.1007/s00122-003-1322-0

  • Bettini PP, Baraldi R, Rapparini F, Melani L, Mauro ML, Bindi D, Buiatti M (2010) The insertion of the Agrobacterium rhizogenes rolC gene in tomato (Solanum lycopersicum L.) affects plant architecture and endogenous auxin and abscisic acid levels. Sci Hort 123:323–328. doi:10.1016/j.scienta.2009.09.013

    Article  CAS  Google Scholar 

  • Bouizgarne B, El-Maarouf-Bouteau H, Frankart C, Reboutier D, Madiona K, Pennarun AM, Monestiez M, Trouverie J, Amiar Z, Briand J, Brault M, Rona JP, Ouhdouch Y, El Hadrami I, Bouteau F (2006) Early physiological response of Arabidopsis thaliana cells to fusaric acid: toxic and signalling effects. New Phytol 169:209–218. doi:10.1111/j.1469-8137.2005.01561.x

    Article  CAS  PubMed  Google Scholar 

  • Bradford KJ, Trewavas AJ (1994) Sensitivity thresholds and variable time scales in plant hormone action. Plant Physiol 105:1029–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgakov VP, Shkryl YN, Veremeichik GN, Gorpenchenko TY, Vereshchagina YV (2013) Recent advances in the understanding of Agrobacterium rhizogenes-derived genes and their effects on stress resistance and plant metabolism. Adv Biochem Engin Biotechnol 134:1–22. doi:10.1007/10_2013_179

    CAS  Google Scholar 

  • Costantino P, Capone I, Cardarelli M, De Paolis A, Mauro ML, Trovato M (1994) Bacterial plant oncogenes: the rol genes' saga. Genetica 94:203–211. doi:10.1007/BF01443434

    Article  CAS  PubMed  Google Scholar 

  • Dehio C, Grossmann K, Schell J, Schmülling T (1993) Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes TL-DNA. Plant Mol Biol 23:1199–1210. doi:10.1007/BF00042353

    Article  CAS  PubMed  Google Scholar 

  • de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Rodriguez Egea P, Bogre L, Grant M (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26:1434–1443. doi:10.1038/sj.emboj.7601575

    Article  PubMed  PubMed Central  Google Scholar 

  • Does MP, Dekker BMM, de Groot MJA, Offringa R (1991) A quick method to estimate the T-DNA copy number in transgenic plants at an early stage after transformation, using inverse PCR. Plant Mol Biol 17:151–153. doi:10.1007/BF00036819

    Article  CAS  PubMed  Google Scholar 

  • Faiss M, Strnad M, Rédig P, Dolezal K, Hanus J, Van Onckelen H, Schmülling T (1996) Chemically induced expression of the rolC-encoded β-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J 10:33–46. doi:10.1046/j.1365-313X.1996.10010033.x

    Article  CAS  Google Scholar 

  • Fernández-Falcón M, Borges AA, Borges-Pérez A (2003) Induced resistance to Fusarium wilt of banana by exogenous application of indoleacetic acid. Phytoprotection 84:149–153. doi:10.7202/008492ar

    Article  Google Scholar 

  • Filippini F, Rossi V, Marin O, Trovato M, Costantino P, Downey PM, Lo Schiavo F, Terzi M (1996) A plant oncogene as a phosphatase. Nature 379:499–500. doi:10.1038/379499a0

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signalling in seeds and seedlings. Plant Cell 14:S15–S45. doi:10.1105/tpc.010441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fladung M, Gieffers W (1993) Resistance reactions of leaves and tubers of rolC transgenic tetraploid potato to bacterial and fungal pathogens. Correlation with sugar, starch and chlorophyll content. Physiol Mol Plant Pathol 42:123–132. doi:10.1006/pmpp.1993.1010

    Article  CAS  Google Scholar 

  • Godard S, Slacanin I, Viret O, Gindro K (2008) Induction of defence mechanisms in grapevine leaves by emodin- and anthraquinone-rich plant extracts and their conferred resistance to downy mildew. Plant Physiol Biochem 47:827–837. doi:10.1016/j.plaphy.2009.04.003

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1e9

    Google Scholar 

  • Holefors A, Xue Z-T, Welander M (1998) Transformation of the apple rootstock M26 with the rolA gene and its influence on growth. Plant Sci 136:69–78. doi:10.1016/S0168-9452(98)00106-X

    Article  CAS  Google Scholar 

  • Kremer D, Kosalec I, Locatelli M, Epifano F, Genovese S, Carlucci G, Zovko Koncic M (2012) Anthraquinone profiles, antioxidant and antimicrobial properties of Frangula rupestris (Scop.) and Frangula alnus Mill. bark. Food Chem 131:1174–1180. doi:10.1016/j.foodchem.2011.09.094

  • Loewen PC, Hennge-Aronis R (1994) The role of the sigma factor σS (KatF) in bacterial global regulation. Annu Rev Microbiol 48:53–80. doi:10.1146/annurev.mi.48.100194.000413

    Article  CAS  PubMed  Google Scholar 

  • Marrè MT, Vergani P, Albergoni FC (1993) Relationship between fusaric acid uptake and its binding to cell structures by leaves of Egeria densa and its toxic effects on membrane permeability and respiration. Physiol Mol Plant Pathol 42:141–157. doi:10.1006/pmpp.1993.1012

    Article  Google Scholar 

  • Maurel C, Barbier-Brygoo H, Spena A, Tempé J, Guern J (1991) Single rol genes from the Agrobacterium rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum. Plant Physiol 97:212–216. doi: 10.1104/pp.97.1.212

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450. doi: 10.1146/annurev-arplant-042110-103854

  • Moritz T, Schmülling T (1998) The gibberellin content of rolA transgenic tobacco plants is specifically altered. J Plant Physiol 153:774–776. doi:10.1016/S0176-1617(98)80234-4

    Article  CAS  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473. doi:10.1111/j.1399-3054.1997.tb03050.x

    Article  CAS  Google Scholar 

  • Nitsch L, Kohlen W, Oplaat C, Charnikhova T, Cristescu S, Michieli P, Wolters-Arts M, Bouwmeester H, Mariani C, Vriezen WH, Rieu I (2012) ABA-deficiency results in reduced plant and fruit size in tomato. J Plant Physiol 169:878–883. doi:10.1016/j.jplph.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  • Palazón J, Cusido RM, Roig C, Piñol MT (1997) Effect of rol genes from Agrobacterium rhizogenes TL-DNA on nicotine production in tobacco root cultures. Plant Physiol Biochem 35:155–162

    Google Scholar 

  • Pandolfini T, Storlazzi A, Calabria E, Defez R, Spena A (2000) The spliceosomal intron of the rolA gene of Agrobacterium rhizogenes is a prokaryotic promoter. Mol Microbiol 35:1326–1334. doi:10.1046/j.1365-2958.2000.01810.x

    Article  CAS  PubMed  Google Scholar 

  • Petti C, Reiber K, Ali SS, Berney M, Doohan FM (2012) Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent. BMC Plant Biol 12:224. doi:10.1186/1471-2229-12-224

  • Ridgen DJ, Carneiro M (1999) A structural model for the rolA protein and its interaction with DNA. Proteins 37:697–708. doi:10.1002/(SICI)1097-0134(19991201)37:4<697::AID-PROT18>3.0.CO;2-Y

    Article  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defence: more than just JASMONATE-SALICYLATE antagonism. Annu Rev Phytopathol 49:317–343. doi:10.1146/annurev-phyto-073009-114447

    Article  CAS  PubMed  Google Scholar 

  • Salvianti F, Bettini PP, Giordani E, Sacchetti P, Bellini E, Buiatti M (2008) Identification by suppression subtractive hybridization of genes expressed in pear (Pyrus spp.) upon infestation with Cacopsylla pyri (Homoptera: Psyllidae). J Plant Physiol 165:1808–1816. doi:10.1016/j.jplph.2007.12.010

  • Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholtz U, Pons-Kühnemann J, Sonnewald S, Sonnewald U, Kogel K-H (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461–474. doi:10.1111/j.1365-313X.2009.03887.x

    Article  PubMed  Google Scholar 

  • Schmülling T, Fladung M, Grossmann K, Schell J (1993) Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenes T-DNA. Plant J 3:371–382. doi:10.1046/j.1365-313X.1993.t01-20-00999.x

    Article  Google Scholar 

  • Sharaf EF, Farrag AA (2004) Induced resistance in tomato plants by IAA against Fusarium oxysporum lycopersici. Pol J Microbiol 53:111–116

    CAS  PubMed  Google Scholar 

  • Sharp RE, LeNoble M, Else MA, Thorne ET, Gherardi F (2000) Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J Exp Bot 51:1575–1584. doi:10.1093/jexbot/51.350.1575

    Article  CAS  PubMed  Google Scholar 

  • Shkryl YN, Veremeichik GN, Bulgakov VP, Tchernoded GK, Mischenko NP, Fedoreyev SA, Zhuravlev YN (2008) Individual and combined effects of the rolA, B, and C genes on anthraquinone producution in Rubia cordifolia transformed calli. Biotechnol Bioeng 100:118–125. doi:10.1002/bit.21727

    Article  CAS  PubMed  Google Scholar 

  • Spena A, Schmülling T, Koncz C, Schell JS (1987) Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Storti E, Latil C, Salti S, Bettini P, Bogani P, Pellegrini MG, Simeti C, Molnar A, Buiatti M (1992) The in vitro physiological phenotype of tomato resistance to Fusarium oxysporum f. sp. lycopersici. Theor Appl Genet 84:123–128. doi:10.1007/BF00223991

    Article  CAS  PubMed  Google Scholar 

  • Sun L-Y, Monneuse M-O, Martin-Tanguy J, Tepfer D (1991) Changes in flowering and the accumulation of polyamines and hydroxycinnamic acid-polyamine conjugates in tobacco plants transformed by the rolA locus from the Ri TL-DNA of Agrobacterium rhizogenes. Plant Sci 80:145–156. doi:10.1016/0168-9452(91)90279-H

    Article  CAS  Google Scholar 

  • Thorne SH, Williams HD (1997) Adaptation to nutrient starvation in Rhizobium leguminosarum bv. phaseoli: analysis of survival, stress resistance, and changes in macromolecular synthesis during entry and exit from stationary phase. J Bacteriol 181:981–990

    Google Scholar 

  • Trovato M, Maras B, Linhares F, Costantino P (2001) The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Proc Natl Acad Sci USA 98:13449–13453. doi:10.1073/pnas.231320398

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138. doi:10.4161/psb.2.3.4156

    Article  PubMed  PubMed Central  Google Scholar 

  • van Altvorst AC, Bino RJ, van Dijk AJ, Lamers AMJ, Lindhout WH, van der Mark F, Dons JJM (1992) Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development. Plant Sci 83:77–85. doi:10.1016/0168-9452(92)90064-S

    Article  Google Scholar 

  • Vansuyt G, Vilaine F, Tepfer M, Rossignol M (1992) rolA modulates the sensitivity to auxin of the proton translocation catalyzed by the plasma membrane H + −ATPase in transformed tobacco. FEBS Lett 298:89–92. doi:10.1016/0014-5793(92)80028-F

    Article  CAS  PubMed  Google Scholar 

  • Vilaine F, Rembur J, Chriqui D, Tepfer M (1998) Modified development in transgenic tobacco plants expressing a rolA::GUS translational fusion and subcellular localization of the fusion protein. Mol Plant-Microbe In 11:855–859. doi:10.1094/MPMI.1998.11.9.855

    Article  CAS  Google Scholar 

  • Walton JD (2001) Secondary metabolites: killing pathogens. eLS 1-5. doi:10.1038/npg.els.0000917

  • Zia M, Mirza B, Malik SA, Chaudhary MF (2010) Expression of rol genes in transgenic soybean (Glycine max L.) leads to changes in plant phenotype, leaf morphology, and flowering time. Plant Cell Tissue Organ Cult 103:227–236. doi:10.1007/s11240-010-9771-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Prof. Aniello Scala (Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente, University of Florence, Italy) for helpful discussion and critical reading of the manuscript. Riccardo Innocenti (Dipartimento di Biologia, University of Florence, Italy) is acknowledged for photographic work on transgenic plants. Research supported by grants from Ministero dell’Università e della Ricerca, Progetto Nazionale di Ricerca “Biotecnologie Avanzate”, Tema 4 to PPB, ES, RB, FR, PM, PC; from Ministero delle Politiche Agricole e Forestali, project “Protezione delle piante mediante l’uso di marcatori molecolari” (PROMAR) to PPB, RB, FR; from Progetto Ateneo Sapienza Università di Roma to Prof. Maria Maddalena Altamura and MLM.

Conflict of interest

Authors P. P. Bettini, R. Baraldi and F. Rapparini have received research grants from Ministero dell’Università e della Ricerca and Ministero delle Politiche Agricole e Forestali. Authors E. Santangelo, P. Mosconi and P. Crinò have received research grant from Ministero dell’Università e della Ricerca. Author M. L. Mauro has received research grant from Progetto Ateneo Sapienza Università di Roma.

Author contribution statement

P. P. Bettini obtained the transgenic plants, carried out phenotypic analysis and self-fertilization, performed molecular analysis and ion leakage experiments, and wrote the paper. R. Baraldi and F. Rapparini carried out the determination of ABA and IAA levels and revised the manuscript. E. Santangelo, P. Mosconi and P. Crinò performed the infection experiment, collected and analyzed the data and revised the manuscript. M. L. Mauro obtained the construct with the Agrobacterium rhizogenes rolA gene in the appropriate Agrobacterium tumefaciens strain for transformation and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Mauro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bettini, P.P., Santangelo, E., Baraldi, R. et al. Agrobacterium rhizogenes rolA gene promotes tolerance to Fusarium oxysporum f. sp. lycopersici in transgenic tomato plants (Solanum lycopersicum L.). J. Plant Biochem. Biotechnol. 25, 225–233 (2016). https://doi.org/10.1007/s13562-015-0328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-015-0328-4

Keywords

Navigation