Skip to main content
Log in

Assessment of heat transfer through mold slag film considering radiative absorption behavior of mold fluxes

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Controlling the heat transfer rate from solidifying shell to copper mold is one of the important role of mold flux film during continuous casting of steels. It is highly desirable to regulate the thermal resistance of mold flux film not to exceed the critical quantity of mold heat transfer rate to prevent cast steel products from surface defects. In order to examine the effect of thermal radiation on the overall heat transfer rate through slag film in the continuous casting mold, the absorption coefficient has been investigated for various mold fluxes using a UV and an FT-IR spectrometer, followed by numerical calculations based on gray gas assumption. It is estimated that the heat transfer rate will decrease in 2-4% by addition of 3.2 mass% NiO into the conventional mold flux system with basicity (CaO/SiO2) of 1.07. As the increase of absorption coefficients will not be harmful to any casting performances such as friction in a casting mold, it is highly recommended to enhance the thermal radiative absorption behavior of mold slag film by optimizing the chemistry of mold fluxes, especially in the wavelength range of 1 to 3 µm at which the emitted energy intensity from steel shell will be maximized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Cho, T. Emi, H. Shibata, and M. Suzuki, ISIJ Int. 38, 268 (1998).

    Article  Google Scholar 

  2. S. Ohmiya, K. H. Tacke, and K. Schwerdtfeger, Ironmak. Steelmak. 10, 24 (1983).

    Google Scholar 

  3. J. W. Cho, T. Emi, H. Shibata, and M. Suzuki, ISIJ Int. 38, 440 (1998).

    Article  Google Scholar 

  4. W. Wang, L. Zhou, and G. Kezhuan, Met. Mater. Int. 16, 913 (2010).

    Article  Google Scholar 

  5. J. W. Cho, T. Emi, H. Shibata, and M. Suzuki, ISIJ Int. 38, 843 (1998).

    Article  Google Scholar 

  6. E. Y. Ko, J. Choi, J. Y. Park, and I. Shon, Met. Mater. Int. 20, 141 (2014).

    Article  Google Scholar 

  7. J. Y. Park, E. Y. Ko, J. Choi, and I. Shon, Met. Mater. Int. 20, 1103 (2014).

    Article  Google Scholar 

  8. J. Diao, B. Xie, J. Xiao, and C. Ji, ISIJ Int. 49, 1710 (2009).

    Article  Google Scholar 

  9. J. W. Cho and H. Shibata, J. Non-Cryst. Solids, 282, 110 (2001).

    Article  Google Scholar 

  10. J. W. Cho, K. Blazek, M. Frazee, H. B. Yin, J. H. Park, and S.W. Moon, ISIJ Int. 53, 62 (2013).

    Article  Google Scholar 

  11. W. Wang, K. Gu, L. Zhou, F. Ma, I. Sohn, D. J. Min, H. Matsuura, and F. Tsukihashi, ISIJ Int. 51, 1838 (2011).

    Article  Google Scholar 

  12. M. Susa, K. Nagata, and K. C. Mills, Ironmak. Steelmak. 20, 372 (1993).

    Google Scholar 

  13. M. Susa, A. Kushimoto, H. Toyota, M. Hayashi, R. Endo, and Y. Kobayashi, ISIJ Int. 49, 1722 (2009).

    Article  Google Scholar 

  14. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 2nd ed., pp.412–447, Hemisphere Pub. Corp., Washington (1981).

    Google Scholar 

  15. K. Kusabiraki and Y. Shiraishi, J. Jpn. Inst. Met. 45, 250 (1981).

    Google Scholar 

  16. K. Kusabiraki and Y. Shiraishi, J. Jpn. Inst. Met. 45, 888 (1981).

    Google Scholar 

  17. K. Kusabiraki and Y. Shiraishi, J. Jpn. Inst. Met. 45, 259 (1981).

    Google Scholar 

  18. I. C. Hisatsune and N. H. Suarez, Inorg. Chem. 3, 171 (1964).

    Article  Google Scholar 

  19. J. S. Berkes and W. B. White, Phys. Chem. Glasses, 7, 191 (1966).

    Google Scholar 

  20. M. Hayashi, M. Susa, T. Oki, and K. Nagata, ISIJ Int. 37, 126 (1997).

    Article  Google Scholar 

  21. T. Mizoguchi, S. Ogibayashi, and T. Kajitani, Tetsu-to-Hagane 81, 971 (1995).

    Google Scholar 

  22. K. Kobayashi, Thermophysical Properties Handbook, p.23, Yokendo, Tokyo (1990).

    Google Scholar 

  23. Y. Kawai and Y. Shiraishi, Handbook of Physico-chemical Properties at High Temperature, p.241, ISIJ, Tokyo (1988).

    Google Scholar 

  24. H. Ohta, M. Masuda, K. Watanabe, K. Nakajima, H. Shibata, and Y. Yaseda, Tetsu-to-Hagane 80, 463 (1994).

    Google Scholar 

  25. Y. Kang and K. Morita, ISIJ Int. 46, 420 (2006).

    Article  Google Scholar 

  26. S. Bagha, N. C. Machingawuta, and P. Grieveson, Proc. 3rd Int. Conf. on Molten Slags, Fluxes and Salts, p.235, ISS, Glasgow (1988).

    Google Scholar 

  27. M. Hanao, M. Kawamoto, and A. Yamanaka, ISIJ Int. 52, 1310 (2012).

    Article  Google Scholar 

  28. M. Susa, A. Kushimoto, R. Endo, and Y. Kobayashi, ISIJ Int. 51, 1587 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Wook Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, DW., Cho, JW. & Kim, SH. Assessment of heat transfer through mold slag film considering radiative absorption behavior of mold fluxes. Met. Mater. Int. 21, 580–587 (2015). https://doi.org/10.1007/s12540-015-4448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4448-0

Keywords

Navigation