Skip to main content
Log in

Al diffusion in ZnO nanowalls investigated by atom probe tomography

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Synthesis of ZnO nanowall structures using Ni catalyst was studied. ZnO nanowalls were grown by vapour-liquid-solid method. Ni as being a catalyst in the formation of ZnO nanowalls provided nucleation sites for the nucleation and the growth of ZnO nanowalls. Even though the sapphire system with ZnO has the high stability, the reactions between ZnO nanowalls and the sapphire substrate formed a 10-nm-thick interlayer during ZnO nanowall growth. Moreover, during the growth of the ZnO nanowalls, diffusion of Ni and Al was not expected as the Ni-Sapphire system is known to be non-reactive. Atom-probe tomography revealed that Al and Ni diffused into the NiO interface and sapphire substrate. Al diffused along the interface generated by the growth of ZnO nanowall, but Ni diffused into the interlayer between ZnO and sapphire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    Article  CAS  Google Scholar 

  2. Z. L. Wang and J. Song, Science 312, 242 (2006).

    Article  CAS  Google Scholar 

  3. M. J. Zheng, L. D. Zhang, G. H. Li, and W. Z. Shen, Chem. Phys. Lett. 363, 123 (2002).

    Article  CAS  Google Scholar 

  4. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).

    Article  CAS  Google Scholar 

  5. H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, Science 300, 1249 (2003).

    Article  CAS  Google Scholar 

  6. J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, D. Steeves, B. Kimball, and W. Porter, Appl. Phys. A: Mater. Sci. Process. 78, 539 (2004).

    Article  CAS  Google Scholar 

  7. S. W. Kim, H. K. Park, M. S. Yi, N. M. Park, J. H. Park, S. H. Kim, S. L. Maeng, C. J. Choi, and S.E. Moon, Appl. Phys. Lett. 90, 033107 (2007).

    Article  Google Scholar 

  8. M. M. Brewster, M. Y. Lu, S. K. Lim, M. J. Smith, X. Zhou, and S. Gradecak, J. Phys. Chem. Lett. 2, 1940 (2011).

    Article  CAS  Google Scholar 

  9. M. Lorenza, E. M. Kaidashevb, A. Rahm, Th. Nobis, J. Lenzner, G. Wagnerc, D. Spemann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett. 86, 143113 (2005).

    Article  Google Scholar 

  10. A. Sasaki, W. Hara, A. Matsuda, N. Tateda, S. Otaka, S. Akiba, K. Saito, T. Yodo, and M. Yoshimoto, Appl. Phys. Lett. 86, 231911 (2005)

    Article  Google Scholar 

  11. G. Levi, C. Schew, and W. D. Kaplan, Interface Science 9, 213 (2001).

    Article  CAS  Google Scholar 

  12. H. Okamoto, J. Phase Equilib. 24, 280 (2003).

    Article  CAS  Google Scholar 

  13. H. Okamoto, J. Phase Equilib. and Diffus. 27, 427 (2006).

    CAS  Google Scholar 

  14. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doǧan, V. Avrutin, S. J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  15. H. C. Ong and G. T. Du, J. Cryst. Growth 265, 471 (2004).

    Article  CAS  Google Scholar 

  16. J. Xu, H. Yang, W. Fu, W. Fan, Q. Zhu, M. Li, and G. Zou, J. Alloy. Compd. 458, 119 (2008).

    Article  CAS  Google Scholar 

  17. M. Rajalakshmi, A. K. Arora, B. S. Bendre, and S. Mahamuni, J. Appl. Phys. 87, 2445 (2000).

    Article  CAS  Google Scholar 

  18. J. Serrano, F. G. Manjon, A. H. Romero, F. Widulle, R. Lauck, M. Cardona, Phys. Rev. Lett. 90, 055510 (2003).

    Article  CAS  Google Scholar 

  19. C. R. Gorla, W. E. Mayo, S. Liang, and Y. Lu, J. Appl. Phys. 87, 3736 (2000).

    Article  CAS  Google Scholar 

  20. Y. M. Chen, T. Ohkubo, M. Kodzuka, K. Morita, and K. Hono, Scripta. Mater. 61, 693 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChanGyung Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Jung, W. & Park, C. Al diffusion in ZnO nanowalls investigated by atom probe tomography. Met. Mater. Int. 19, 1117–1121 (2013). https://doi.org/10.1007/s12540-013-5029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-5029-8

Key words

Navigation