Skip to main content

Advertisement

Log in

Dynamic Compressive Properties of Zr-based Amorphous Matrix Composites Reinforced with Tungsten Continuous Fibers or Porous Foams

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, amorphous matrix composites, whose matrix was a Zr-based amorphous alloy and reinforcements were tungsten continuous fibers or porous foams, were fabricated by the liquid pressing process, and their dynamic compressive properties were investigated. Approximately 65 to 69 vol pct of tungsten fibers or foams were distributed homogeneously in the amorphous matrix, whereas defects such as misinfiltration or pores were eliminated. According to the dynamic compressive test results of the tungsten-fiber-reinforced composite, tungsten fibers worked to withstand a considerable amount of applied loads, whereas the amorphous matrix sustains bent or bucked fibers, thereby leading to the maximum strength of 3328 MPa and the plastic strain of 2.6 pct. In the tungsten-foam-reinforced composite, the compressive stress continued to increase according to the work hardening after the yielding, thereby leading to the maximum strength of 3458 MPa and the plastic strain of 20.6 pct. This dramatic increase in maximum strength and plastic strain was attributed to the simultaneous and homogeneous deformation at tungsten foams and amorphous matrix because tungsten foams did not show anisotropy and tungsten/matrix interfaces were excellent. These findings suggested that tungsten-foam-reinforced composite could be applied to penetrators, in which the self-sharpening should be well promoted while keeping high specific gravity, sufficient strength, and plastic strain because cracks were formed at some heavily deformed tungsten foams by the shear fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Inoue, N. Nishiyama, and T. Matsuda: Mater. Trans. JIM, 1996, vol. 37, pp. 181–4.

    CAS  Google Scholar 

  2. A. Peker and W.L. Johnson: Appl. Phys. Lett., 1993, vol. 63, pp. 2342–44.

    Article  Google Scholar 

  3. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, and T. Masumoto: Mater. Trans., JIM, 1993, vol. 34, pp. 1234–37.

    CAS  Google Scholar 

  4. R. Varadarajan, A.K. Thurston, and J.J. Lewandowski: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 149–58.

    Article  CAS  Google Scholar 

  5. A. Inoue, T. Zhang, and A. Takeuchi: Appl. Phys. Lett., 1997, vol. 71, pp. 464–66.

    Article  CAS  Google Scholar 

  6. K.-Y. Kim, H.-S. Joo, B.-H. Kang, and W. Gao: Metall. Mater. Int., 2011, vol. 17, pp. 857–63.

    Article  CAS  Google Scholar 

  7. M.-U. Kim, D.-H. Kim, S.-H. Han, E. Fleury, and H.-K. Seok: Metall. Mater. Int., 2011, vol. 17, pp. 283–89.

    Article  CAS  Google Scholar 

  8. W.H. Wang, C. Dong, and C.H. Shek: Mater. Sci. Eng. R, 2004, vol. 44, pp. 45–89.

    Article  Google Scholar 

  9. H.-G. Kim and H.J. Jang: Metall. Mater. Int., 2010, vol. 16, pp. 581–85.

    Article  CAS  Google Scholar 

  10. H.A. Bruck, T. Christman, A.J. Rosakis, and W.L. Johnson: Scripta Metall., 1994, vol. 30, pp. 429–34.

    Article  CAS  Google Scholar 

  11. Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto: Appl. Phys. Lett., 1996, vol. 69, pp. 1208–10.

    Article  CAS  Google Scholar 

  12. A. Singh and S.P. Harimkar: J. Alloys Compd., 2010, vol. 497, pp. 121–26.

    Article  CAS  Google Scholar 

  13. H.T. Jeong, W. Yook, B.J. Kim, W.T. Kim, and D.H. Kim: Metall. Mater. Int., 2010, vol. 16, pp. 517–22.

    Article  CAS  Google Scholar 

  14. L.Q. Xing, Y. Li, K.T. Ramesh, J. Li, and T.C. Hufnagel: Phys. Rev. B, 2001, vol. 64, p. 180201.

    Article  Google Scholar 

  15. H. Choi-Yim and W.L. Johnson: Appl. Phys. Lett., 1997, vol. 71, pp. 3808–10.

    Article  CAS  Google Scholar 

  16. R.B. Dandliker, R.D. Conner, and W.L. Johnson: J. Mater. Res., 1998, vol. 13, pp. 2896–2901.

    Article  CAS  Google Scholar 

  17. R.D. Conner, R.B. Dandliker, and W.L. Johnson: Acta Mater., 1998, vol. 46, pp. 6089–6102.

    Article  CAS  Google Scholar 

  18. P. Wadhwa, J. Heinrich, and R. Busch: Scripta Mater., 2007, vol. 56, pp. 73–76.

    Article  CAS  Google Scholar 

  19. Y.H. Jang, S.S. Kim, S.K. Lee, D.H. Kim, and M.K. Um: Compos. Sci. Technol., 2005, vol. 65, pp. 781–84.

    CAS  Google Scholar 

  20. S.B. Lee, K. Matsunaga, Y. Ikuhara, and S.K. Lee: Mater. Sci. Eng. A, 2007, vol. A449, pp. 778–81.

    Google Scholar 

  21. C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2000, vol. 84, pp. 2901–04.

    Article  CAS  Google Scholar 

  22. D-G. Lee, S. Lee, and C.S. Lee: Mater. Sci. Eng. A, 2004, vol. A366, pp. 25–37.

    CAS  Google Scholar 

  23. A. Marchand and J. Duffy: J. Mech. Phys. Solids, 1988, vol. 36, pp. 251–83.

    Article  Google Scholar 

  24. K.A. Hartley, J. Duffy, and R.H. Hawley: J. Mech. Phys. Solids, 1987, vol. 35, pp. 283–301.

    Article  Google Scholar 

  25. D.-K. Kim, S.Y. Kang, S. Lee, and K.J. Lee: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 81–92.

    Article  CAS  Google Scholar 

  26. K. Cho, S. Lee, S.R. Nutt, and J. Duffy: Acta Metall., 1993, vol. 41, pp. 923–32.

    Article  CAS  Google Scholar 

  27. J.W. Qiao, P. Feng, Y. Zhanga, Q.M. Zhang, and G.L. Chen: J. Alloys Compd., 2009, vol. 486, pp. 527–31.

    Article  CAS  Google Scholar 

  28. S.-B. Lee, S.-K. Lee, S. Lee, and N.J. Kim: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 763–71.

    Article  CAS  Google Scholar 

  29. K. Lee, C.-Y. Son, S.-B. Lee, S.-K. Lee, and S. Lee: Mater. Sci. Eng. A, 2010, vol. A527, pp. 941–46.

    CAS  Google Scholar 

  30. K. Lee, S.-B. Lee, S.-K. Lee, and S. Lee: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1319–26.

    Article  CAS  Google Scholar 

  31. J.G. Lee, D.G. Lee, S. Lee, K.M. Cho, I.M. Park, and N.J. Kim: Mater. Sci. Eng., A, 2005, vol. 390A, pp. 427–36.

    Google Scholar 

  32. E.D.H. Davies and S.C. Hunter: J. Mech. Phys. Solids, 1963, vol. 11, pp. 155–79.

    Article  Google Scholar 

  33. D.R. Chichili, K.T. Ramesh, and K.J. Hemker: Acta Mater., 1998, vol. 46, pp. 1025–43.

    Article  CAS  Google Scholar 

  34. M.A. Meyers: Dynamic Behavior of Materials, Wiley, New York, NY, 1994, pp. 296–322.

    Book  Google Scholar 

  35. S. Nemat-Nasser: Mechanical Testiong and Evaluation, ASM Handbook, ASM International, Materials Park, OH, 2000, pp. 425–559.

    Google Scholar 

  36. K. Lee, K. Euh, D.H. Nam, S. Lee, and N.J. Kim: Mater. Sci. Eng. A, 2007, vol. A449, pp. 937–40.

    Google Scholar 

  37. C.-Y. Son, S.-B. Lee, S.-K. Lee, C.P. Kim, and S. Lee: Mater. Sci. Eng. A, 2010, vol. A527, pp. 4028–34.

    CAS  Google Scholar 

  38. M.L. Wang, X. Hui, and G.L. Chen: J. Mater. Res., 2008, vol. 23, pp. 320–27.

    Article  CAS  Google Scholar 

  39. A.C. Lund and C.A. Schuh: Intermetallics, 2004, vol. 12, pp. 1159–65.

    Article  CAS  Google Scholar 

  40. K. Kawamura, H. Kato, A. Inoue, and T. Masumoto: Appl. Phys. Lett., 1995, vol. 67, pp. 2008–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant 2010-0026981 funded by the Korea government (MEST). The authors are grateful to Drs. Young Buem Song of Agency for Defense Development and Choongnyun Paul Kim of POSTECH for their helpful discussion on the fabrication of the composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted May 23, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, CY., Kim, G.S., Lee, SB. et al. Dynamic Compressive Properties of Zr-based Amorphous Matrix Composites Reinforced with Tungsten Continuous Fibers or Porous Foams. Metall Mater Trans A 43, 1911–1920 (2012). https://doi.org/10.1007/s11661-011-1066-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1066-4

Keywords

Navigation