Skip to main content

Advertisement

Log in

Fishmeal partial substitution within aquafeed formulations: life cycle assessment of four alternative protein sources

  • LCA FOR ENERGY SYSTEMS AND FOOD PRODUCTS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Fed aquaculture has long been based on fishmeal (FM) as the main protein source for carnivorous species, but when its demand and price began increasing, both researchers and the industry started to search for alternative protein sources to meet the challenge of securing aquafeed. Consequently, this study has recourse to life cycle assessment (LCA) methodology to identify any critical points and improvement strategies in the current production of four partial substitutes for FM namely dried microalgae biomass from Tetraselmis suecica (DMB_TETRA) and Tisochrysis lutea (DMB_TISO); insect meal (IM) from Hermetia illucens larvae; and poultry by-product meal (PBM).

Methods

System boundaries are from the cradle to the mill gate, thus including the production phase (and the related upstream activities) and the subsequent biomass processing into unpackaged dried meal. One tonne of protein content was chosen as functional unit. The inventory was based on foreground data provided by the industry and complemented by background data sourced from the Ecoinvent v 3.4 and Agribalyse® v 1.3 LCI databases. The environmental effects were assessed considering five impacts namely global warming (kg CO2 eq.), acidification (kg SO2 eq.) and eutrophication (kg PO43− eq.) estimated via the CML-IA method, plus cumulative energy use (MJ) and water use (m3 m−2 month−1). Two alternative scenarios per production chain were considered in order to increase the robustness of the results.

Results and discussion

The performance-based ranking indicated the PBM and IM scenarios as the most sustainable options. Both microalgal systems scored the worst performances in four impacts out of five, with eutrophication impact as the only exception. The nutrients provided to poultry and insects (i.e. the feed) as well as to microalgae (the carbon source and the fertilizers) were the main contributors to impacts, together with energy consumption. Despite being cultivated with identical technologies, the two microalgae showed different performances due to their different annual yields and to different consumable goods, water and energy consumptions.

Conclusions

The results provided a ranking of these four partial FM substitutes and allowed to make useful considerations on how to improve their environmental sustainability. To this regard, the impacts of IM and DMB production could be reduced by improving nutrient efficiency and reducing energy needs. On the other hand, PBM production is already optimized and is not expected to change substantially in the future years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aubin J (2013) Life cycle assessment as applied to environmental choices regarding farmed or wild-caught fish. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 8:1–10. https://doi.org/10.1079/PAVSNNR20138011

    Article  Google Scholar 

  • Barry T (2004) Evaluation of the economic, social, and biological feasibility of bioconverting food wastes with the black soldier fly (Hermetia illucens). University of North Texas

  • Basto-Silva C, Valente LMP, Matos E et al (2018) Life cycle assessment of aquafeed ingredients. Int J Life Cycle Assess 23:995–1017. https://doi.org/10.1007/s11367-017-1414-8

    Article  CAS  Google Scholar 

  • Basto-Silva C, Guerreiro I, Oliva-Teles A, Neto B (2019) Life cycle assessment of diets for gilthead seabream (Sparus aurata) with different protein/carbohydrate ratios and fishmeal or plant feedstuffs as main protein sources. Int J Life Cycle Assess 24:2023–2034. https://doi.org/10.1007/s11367-019-01625-7

    Article  CAS  Google Scholar 

  • Batista AP, Niccolai A, Fradinho P, Fragoso S, Bursic I, Rodolfi L, Biondi N, Tredici MR, Sousa I, Raymundo A (2017) Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research 26:161–171

  • Boissy J, Aubin J, Drissi A, van der Werf HMG, Bell GJ, Kaushik SJ (2011) Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture 321:61–70. https://doi.org/10.1016/j.aquaculture.2011.08.033

    Article  Google Scholar 

  • Bosch G, van Zanten HHE, Zamprogna A, Veenenbos M, Meijer NP, van der Fels-Klerx HJ, van Loon JJA (2019) Conversion of organic resources by black soldier fly larvae: legislation, efficiency and environmental impact. J Clean Prod 222:355–363. https://doi.org/10.1016/j.jclepro.2019.02.270

    Article  Google Scholar 

  • Boulay A-M, Bare J, Benini L, Berger M, Lathuillière MJ, Manzardo A, Margni M, Motoshita M, Núñez M, Pastor AV, Ridoutt B, Oki T, Worbe S, Pfister S (2018) The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int J Life Cycle Assess 23:368–378. https://doi.org/10.1007/s11367-017-1333-8

    Article  Google Scholar 

  • Bribián IZ, Capilla AV, Usón AA (2011) Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 46:1133–1140. https://doi.org/10.1016/j.buildenv.2010.12.002

    Article  Google Scholar 

  • Bruni L, Pastorelli R, Viti C, Gasco L, Parisi G (2018) Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture 487:56–63. https://doi.org/10.1016/j.aquaculture.2018.01.006

    Article  CAS  Google Scholar 

  • Cao L, Diana JS, Keoleian GA (2013) Role of life cycle assessment in sustainable aquaculture. Rev Aquac 5:61–71. https://doi.org/10.1111/j.1753-5131.2012.01080.x

    Article  Google Scholar 

  • Cardinaletti G, Messina M, Bruno M, Tulli F, Poli BM, Giorgi G, Chini-Zittelli G, Tredici M, Tibaldi E (2018) Effects of graded levels of a blend of Tisochrysis lutea and Tetraselmis suecica dried biomass on growth and muscle tissue composition of European sea bass (Dicentrarchus labrax) fed diets low in fish meal and oil. Aquaculture 485:173–182. https://doi.org/10.1016/J.AQUACULTURE.2017.11.049

    Article  CAS  Google Scholar 

  • Cesari V, Zucali M, Sandrucci A, Tamburini A, Bava L, Toschi I (2017) Environmental impact assessment of an Italian vertically integrated broiler system through a life cycle approach. J Clean Prod 143:904–911. https://doi.org/10.1016/j.jclepro.2016.12.030

    Article  Google Scholar 

  • Čičková H, Newton GL, Lacy RC, Kozánek M (2015) The use of fly larvae for organic waste treatment. Waste Manag 35:68–80. https://doi.org/10.1016/j.wasman.2014.09.026

    Article  CAS  Google Scholar 

  • Collotta M, Champagne P, Mabee W, Tomasoni G (2018) Wastewater and waste CO2 for sustainable biofuels from microalgae. Algal Res 29:12–21. https://doi.org/10.1016/J.ALGAL.2017.11.013

    Article  Google Scholar 

  • Commission Regulation (EU) No 56/2013 (2013) amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies

  • Commission Regulation (EU) No 68/2013 (2013) on the Catalogue of feed materials

  • Commission Regulation (EU) No 893/2017 (2017) amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as regards the provisions on processed animal protein

  • Couture JL, Geyer R, Hansen JØ, Kuczenski B, Øverland M, Palazzo J, Sahlmann C, Lenihan H (2019) Environmental benefits of novel nonhuman food inputs to salmon feeds. Environ Sci Technol 53:1967–1975. https://doi.org/10.1021/acs.est.8b03832

    Article  CAS  Google Scholar 

  • da Silva VP, van der Werf HMG, Soares SR, Corson MS (2014) Environmental impacts of French and Brazilian broiler chicken production scenarios: an LCA approach. J Environ Manag 133:222–231. https://doi.org/10.1016/j.jenvman.2013.12.011

    Article  Google Scholar 

  • Davies SJ, Laporte J, Gouveia A, Salim HS, Woodgate SM, Hassaan MS, el-Haroun ER (2019) Validation of processed animal proteins (mono-PAPS) in experimental diets for juvenile gilthead sea bream (Sparus aurata L.) as primary fish meal replacers within a European perspective. Aquac Nutr 25:225–238. https://doi.org/10.1111/anu.12846

    Article  CAS  Google Scholar 

  • dos Santos SKA, Schorer M, de Souza Moura G et al (2019) Evaluation of growth and fatty acid profile of Nile tilapia (Oreochromis niloticus) fed with Schizochytrium sp. Aquac Res 50:1068–1074. https://doi.org/10.1111/are.13979

    Article  CAS  Google Scholar 

  • Dossey AT, Morales-Ramos JA, Guadalupe Rojas M (eds) (2016) Insects as sustainable food ingredients: production, processing and food applications. Elsevier

  • Draganovic V, Jorgensen SE, Boom R et al (2013) Sustainability assessment of salmonid feed using energy, classical exergy and eco-exergy analysis. Ecol Indic 34:277–289. https://doi.org/10.1016/j.ecolind.2013.05.017

    Article  Google Scholar 

  • Ecoinvent (2017) Ecoinvent 3.4 Database. Released October 4th 2017. Retrieved from: https://www.ecoinvent.org/database/older-versions/ecoinvent-34/ecoinvent-34.html

  • Enzing C, Ploeg M, Barbosa M, Sijtsma L (2014) Microalgae-based products for the food and feed sector: an outlook for Europe. Report EUR 26255. Publications Office of the European Union, Luxembourg

  • FAO (2018) The state of world fisheries and aquaculture 2018. Meeting the sustainable development goals. Rome, Italy

  • FAO (2019) Fishery and Aquaculture Statistics. Global production by production source 1950–2017 (FishstatJ). FAO Fish. Aquac. Dep. [online]. Rome. Updat. 2019. www.fao.org/fishery/statistics/software/fishstatj/en

  • Fréon P, Durand H, Avadí A, Huaranca S, Orozco Moreyra R (2017) Life cycle assessment of three Peruvian fishmeal plants: toward a cleaner production. J Clean Prod 145:50–63. https://doi.org/10.1016/j.jclepro.2017.01.036

    Article  Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus HJ, et al (2007) Implementation of life cycle impact assessment methods: data v2.0. Ecoinvent report no. 3

  • Gerber PJ, Steinfeld H, Henderson B et al (2013) Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome

  • Gong Y, Bandara T, Huntley M, Johnson ZI, Dias J, Dahle D, Sørensen M, Kiron V (2019) Microalgae Scenedesmus sp. as a potential ingredient in low fishmeal diets for Atlantic salmon (Salmo salar L.). Aquaculture 501:455–464. https://doi.org/10.1016/j.aquaculture.2018.11.049

    Article  CAS  Google Scholar 

  • González-García S, Gomez-Fernández Z, Dias AC, Feijoo G, Moreira MT, Arroja L (2014) Life cycle assessment of broiler chicken production: a Portuguese case study. J Clean Prod 74:125–134. https://doi.org/10.1016/j.jclepro.2014.03.067

    Article  Google Scholar 

  • Grierson S, Strezov V, Bengtsson J (2013) Life cycle assessment of a microalgae biomass cultivation, bio-oil extraction and pyrolysis processing regime. Algal Res 2:299–311. https://doi.org/10.1016/j.algal.2013.04.004

    Article  Google Scholar 

  • Guinée J, Gorrée M, Heijungs R et al (2002) Handbook on life cycle assessment. Operational guide to the ISO standards, vol 1, 2a, 2b and 3. Springer, Netherlands

    Google Scholar 

  • Halloran A, Roos N, Eilenberg J, Cerutti A, Bruun S (2016) Life cycle assessment of edible insects for food protein: a review. Agron Sustain Dev 36:57–69. https://doi.org/10.1007/s13593-016-0392-8

    Article  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784. https://doi.org/10.4155/bfs.10.44

    Article  CAS  Google Scholar 

  • Hekmatpour F, Kochanian P, Marammazi JG, Zakeri M, Mousavi SM (2018) Inclusion of poultry by-product meal in the diet of Sparidentex hasta: effects on production performance, digestibility and nutrient retention. Anim Feed Sci Technol 241:173–183. https://doi.org/10.1016/j.anifeedsci.2018.02.010

    Article  CAS  Google Scholar 

  • Henriksson PJG, Guinée JB, Kleijn R, De Snoo GR (2012) Life cycle assessment of aquaculture systems - a review of methodologies. Int J Life Cycle Assess 17:304–313. https://doi.org/10.1007/s11367-011-0369-4

    Article  Google Scholar 

  • Henriksson PJG, Mohan CV, Phillips MJ (2017) Evaluation of different aquaculture feed ingredients in Indonesia using life cycle assessment. Indones J Life Cycle Assess Sustain 1:13–21

    Google Scholar 

  • Henry MA, Gai F, Enes P, Peréz-Jiménez A, Gasco L (2018a) Effect of partial dietary replacement of fishmeal by yellow mealworm (Tenebrio molitor) larvae meal on the innate immune response and intestinal antioxidant enzymes of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 83:308–313. https://doi.org/10.1016/j.fsi.2018.09.040

    Article  CAS  Google Scholar 

  • Henry MA, Gasco L, Chatzifotis S, Piccolo G (2018b) Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev Comp Immunol 81:204–209. https://doi.org/10.1016/j.dci.2017.12.002

    Article  CAS  Google Scholar 

  • Herrero M, Gerber P, Vellinga T, Garnett T, Leip A, Opio C, Westhoek HJ, Thornton PK, Olesen J, Hutchings N, Montgomery H, Soussana JF, Steinfeld H, McAllister TA (2011) Livestock and greenhouse gas emissions: the importance of getting the numbers right. Anim Feed Sci Technol 166–167:779–782. https://doi.org/10.1016/j.anifeedsci.2011.04.083

    Article  CAS  Google Scholar 

  • ISO (2006a) ISO 14044: environmental management - life cycle assessment - life cycle impact assessment. Geneva, Switzerland

  • ISO (2006b) ISO 14040: environmental management - life cycle assessment - principles and framework. Paris, France

  • Jain KK (2007) Feed ingredients in aqua feeds. In: CAS Training Manual on “Nutritional strategies and feeding management in finfish and shellfish.” Central Institute of Fisheries Education, Mumbai, pp 6–15

  • Karapanagiotidis IT, Psofakis P, Mente E, Malandrakis E, Golomazou E (2019) Effect of fishmeal replacement by poultry by-product meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and gene expression of gilthead seabream (Sparus aurata). Aquac Nutr 25:3–14. https://doi.org/10.1111/anu.12824

    Article  CAS  Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:36. https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  • Koch P, Salou T (2016) AGRIBALYSE®: Rapport Méthodologique – Version 1.3. November 2016. Angers. France

  • Kumaraguru vasagam KP, Ramesh S, Balasubramanian T (2005) Dietary value of different vegetable oil in black tiger shrimp Penaeus monodon in the presence and absence of soy lecithin supplementation: effect on growth, nutrient digestibility and body composition. Aquaculture 250:317–327. https://doi.org/10.1016/j.aquaculture.2005.02.035

    Article  CAS  Google Scholar 

  • Leinonen I, Williams AG, Wiseman J, Guy J, Kyriazakis I (2012) Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: broiler production systems. Poult Sci 91:8–25. https://doi.org/10.3382/ps.2011-01634

    Article  CAS  Google Scholar 

  • Leite GB, Abdelaziz AEM, Hallenbeck PC (2013) Algal biofuels: challenges and opportunities. Bioresour Technol 145:134–141. https://doi.org/10.1016/j.biortech.2013.02.007

    Article  CAS  Google Scholar 

  • Macombe C, Le Feon S, Aubin J, Maillard F (2019) Marketing and social effects of industrial scale insect value chains in Europe: case of mealworm for feed in France. J Insects Food Feed 5:215–224. https://doi.org/10.3920/JIFF2018.0047

    Article  Google Scholar 

  • Mata TM, Cameira M, Marques F et al (2018) Carbon footprint of microalgae production in photobioreactor. In: Energy Procedia. pp 432–437

  • Medeiros D, Sales E, Kiperstok A (2015) Energy production from microalgae biomass: carbon footprint and energy balance. J Clean Prod 96:493–500. https://doi.org/10.1016/j.jclepro.2014.07.038

    Article  Google Scholar 

  • Meeker DL, Hamilton CR (2006) An overview of the rendering industry. In: Meeker DL (ed) Essential rendering. National Renderers Association

  • Mente E, Pierce GJ, Santos MB, Neofitou C (2006) Effect of feed and feeding in the culture of salmonids on the marine aquatic environment: a synthesis for European aquaculture. Aquac Int 14:499–522. https://doi.org/10.1007/s10499-006-9051-4

    Article  Google Scholar 

  • Messina M, Bulfon C, Beraldo P, Tibaldi E, Cardinaletti G (2019) Intestinal morpho-physiology and innate immune status of European sea bass (Dicentrarchus labrax) in response to diets including a blend of two marine microalgae, Tisochrysis lutea and Tetraselmis suecica. Aquaculture 500:660–669. https://doi.org/10.1016/j.aquaculture.2018.09.054

    Article  CAS  Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024. https://doi.org/10.1038/35016500

    Article  CAS  Google Scholar 

  • Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci U S A 106:15103–15110. https://doi.org/10.1073/pnas.0905235106

    Article  CAS  Google Scholar 

  • Oonincx DGAB, Van Itterbeeck J, Heetkamp MJW et al (2010) An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One 5:e14445. https://doi.org/10.1371/journal.pone.0014445

    Article  CAS  Google Scholar 

  • Pelletier N (2008) Environmental performance in the US broiler poultry sector: life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions. Agric Syst 98:67–73. https://doi.org/10.1016/j.agsy.2008.03.007

    Article  Google Scholar 

  • Pelletier N, Tyedmers P (2007) Feeding farmed salmon: is organic better? Aquaculture 272:399–416. https://doi.org/10.1016/j.aquaculture.2007.06.024

    Article  Google Scholar 

  • Pelletier N, Tyedmers P, Sonesson U, Scholz A, Ziegler F, Flysjo A, Kruse S, Cancino B, Silverman H (2009) Not all salmon are created equal: life cycle assessment (LCA) of global salmon farming systems. Environ Sci Technol 43:8730–8736. https://doi.org/10.1021/es9010114

    Article  CAS  Google Scholar 

  • PRé (2012) SimaPro by PRé consultants. Amersfoort, The Netherlands

    Google Scholar 

  • Rana KJ, Siriwardena S, Hasan MR (2009) Impact of rising feed ingredient prices on aquafeeds and aquaculture production. Fisheries and Aquaculture Technical Paper. No. 541. FAO, Rome, Italy

  • Renaud SM, Thinh L-V, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211(1-4):195–214

  • Salomone R, Saija G, Mondello G, Giannetto A, Fasulo S, Savastano D (2017) Environmental impact of food waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens. Journal of Cleaner Production 140:890–905

  • Samuel-Fitwi B, Meyer S, Reckmann K, Schroeder JP, Schulz C (2013) Aspiring for environmentally conscious aquafeed: comparative LCA of aquafeed manufacturing using different protein sources. J Clean Prod 52:225–233. https://doi.org/10.1016/j.jclepro.2013.02.031

    Article  Google Scholar 

  • Schrijvers DL, Loubet P, Sonnemann G (2016) Developing a systematic framework for consistent allocation in LCA. Int J Life Cycle Assess 21:976–993. https://doi.org/10.1007/s11367-016-1063-3

    Article  Google Scholar 

  • Secci G, Mancini S, Iaconisi V, Gasco L, Basto A, Parisi G (2019) Can the inclusion of black soldier fly (Hermetia illucens) in diet affect the flesh quality/nutritional traits of rainbow trout (Oncorhynchus mykiss) after freezing and cooking? Int J Food Sci Nutr 70:161–171. https://doi.org/10.1080/09637486.2018.1489529

    Article  CAS  Google Scholar 

  • Sevigné-Itoiz E, Fuentes-Grünewald C, Gasol CM et al (2012) Energy balance and environmental impact analysis of marine microalgal biomass production for biodiesel generation in a photobioreactor pilot plant. Biomass Bioenergy 39:324–335. https://doi.org/10.1016/J.BIOMBIOE.2012.01.026

    Article  Google Scholar 

  • Shah MR, Lutzu GA, Alam A, Sarker P, Kabir Chowdhury MA, Parsaeimehr A, Liang Y, Daroch M (2018) Microalgae in aquafeeds for a sustainable aquaculture industry. J Appl Phycol 30:197–213. https://doi.org/10.1007/s10811-017-1234-z

    Article  Google Scholar 

  • Skunca D, Tomasevic I, Nastasijevic I, Tomovic V, Djekic I (2018) Life cycle assessment of the chicken meat chain. J Clean Prod 184:440–450. https://doi.org/10.1016/J.JCLEPRO.2018.02.274

    Article  Google Scholar 

  • Smetana S, Mathys A, Knoch A, Heinz V (2015) Meat alternatives: life cycle assessment of most known meat substitutes. Int J Life Cycle Assess 20:1254–1267. https://doi.org/10.1007/s11367-015-0931-6

    Article  CAS  Google Scholar 

  • Smetana S, Palanisamy M, Mathys A, Heinz V (2016) Sustainability of insect use for feed and food: life cycle assessment perspective. J Clean Prod 137:741–751. https://doi.org/10.1016/J.JCLEPRO.2016.07.148

    Article  Google Scholar 

  • Smetana S, Schmitt E, Mathys A (2019) Sustainable use of Hermetia illucens insect biomass for feed and food: Attributional and consequential life cycle assessment. Resour Conserv Recycl 144:285–296. https://doi.org/10.1016/j.resconrec.2019.01.042

    Article  Google Scholar 

  • Strazza C, Magrassi F, Gallo M, Del Borghi A (2015) Life cycle assessment from food to food: a case study of circular economy from cruise ships to aquaculture. Sustain Prod Consum 2:40–51. https://doi.org/10.1016/j.spc.2015.06.004

    Article  Google Scholar 

  • Tacon AGJ (2020) Trends in global aquaculture and aquafeed production: 2000–2017. Rev Fish Sci Aquac 28:43–56. https://doi.org/10.1080/23308249.2019.1649634

    Article  Google Scholar 

  • Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158. https://doi.org/10.1016/j.aquaculture.2008.08.015

    Article  CAS  Google Scholar 

  • Thévenot A, Rivera JL, Wilfart A, Maillard F, Hassouna M, Senga-Kiesse T, le Féon S, Aubin J (2018) Mealworm meal for animal feed: environmental assessment and sensitivity analysis to guide future prospects. J Clean Prod 170:1260–1267. https://doi.org/10.1016/J.JCLEPRO.2017.09.054

    Article  Google Scholar 

  • Tillman A-M (2000) Significance of decision-making for LCA methodology. Environ Impact Assess Rev 20:113–123. https://doi.org/10.1016/S0195-9255(99)00035-9

    Article  Google Scholar 

  • Tredici MR, Bassi N, Prussi M, Biondi N, Rodolfi L, Chini Zittelli G, Sampietro G (2015) Energy balance of algal biomass production in a 1-ha “Green Wall panel” plant: how to produce algal biomass in a closed reactor achieving a high net energy ratio. Appl Energy 154:1103–1111. https://doi.org/10.1016/J.APENERGY.2015.01.086

    Article  Google Scholar 

  • Tredici MR, Rodolfi L, Biondi N, Bassi N, Sampietro G (2016) Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall Panel (GWP®) plant. Algal Res 19:253–263. https://doi.org/10.1016/J.ALGAL.2016.09.005

    Article  Google Scholar 

  • Van Huis A, Van Itterbeeck J, Klunder H et al (2013) Edible insects. Future prospects for food and feed security. FAO, Rome

    Google Scholar 

  • van Zanten HHE, Mollenhorst H, Oonincx DGAB, Bikker P, Meerburg BG, de Boer IJM (2015) From environmental nuisance to environmental opportunity: housefly larvae convert waste to livestock feed. J Clean Prod 102:362–369. https://doi.org/10.1016/j.jclepro.2015.04.106

    Article  Google Scholar 

  • Venero JA, Davis D, Lim CE (2008) Use of plant protein sources in crustacean diets. In: Lim CE, Webster CD, Lee CS (eds) Alternative protein sources in aquaculture diets. Haworth Press, New York, pp 163–203

    Google Scholar 

  • Wu YB, Ren X, Chai XJ, Li P, Wang Y (2018) Replacing fish meal with a blend of poultry by-product meal and feather meal in diets for giant croaker (Nibea japonica). Aquac Nutr 24:1085–1091. https://doi.org/10.1111/anu.12647

    Article  CAS  Google Scholar 

  • Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff M (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res 21:6. https://doi.org/10.1186/2241-5793-21-6

    Article  CAS  Google Scholar 

  • Zarantoniello M, Bruni L, Randazzo B, Vargas A, Gioacchini G, Truzzi C, Annibaldi A, Riolo P, Parisi G, Cardinaletti G, Tulli F, Olivotto I (2018) Partial dietary inclusion of Hermetia illucens (black soldier fly) full-fat prepupae in Zebrafish feed: biometric, histological, biochemical, and molecular implications. Zebrafish 15:519–532. https://doi.org/10.1089/zeb.2018.1596

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere thanks to Guillaume Gras from Innovafeed (http://innovafeed.com/) and to Pierluigi Perantoni, Emiliano Campara, Andrea Di Biase and Luca Zenari from AIA—Agricola Italiana Alimentare S.p.A. (http://www.aiafood.com/en) for providing the raw data concerning Insect and Poultry productive chains, respectively. Finally, the authors would like to thank the reviewers, whose comments and criticisms contributed significantly to improving the quality of the paper.

Funding

This work was partially supported by the SUSHIN project (SUstainable fiSH feeds INnovative ingredients) funded by Ager AGER2-SUSHIN, Cod 2016-0112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Maiolo.

Additional information

Responsible editor: Ian Vázquez-Rowe

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiolo, S., Parisi, G., Biondi, N. et al. Fishmeal partial substitution within aquafeed formulations: life cycle assessment of four alternative protein sources. Int J Life Cycle Assess 25, 1455–1471 (2020). https://doi.org/10.1007/s11367-020-01759-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-020-01759-z

Keywords

Navigation