Skip to main content

Advertisement

Log in

Arsenic Background Concentrations in Surface Soils of Kavala Area, Northern Greece

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A total of 65 surface (0–20 cm) soil samples were collected in an effort to estimate the arsenic background values in Kavala area, Northern Greece. Arsenic was extracted by HNO3 from the <200 µm grain size fraction, and its concentrations were determined in all samples by inductively coupled plasma–mass spectrometry. Arsenic concentrations were log-transformed, and log-normal probability plots (Q–Q plots) were generated. The geochemical background was calculated as the values that lie between g/d and g × d (g, geometric mean; d, geometric standard deviation), which are 3.5 and 25.8 mg kg−1, respectively. The baseline value (g) was 9.5 mg kg−1. With the aid of GIS software, arsenic geochemical maps of the study area were created. The majority of the arsenic elevated concentrations were found in the proximity of the industrialized zone of Kavala.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The geometric mean is used because it is less affected by extreme values in a dataset.

References

  • Bluman, A. G. (2003). Elementary statistics, a step by step approach (2nd ed., p. 637). New York: McGraw-Hill.

    Google Scholar 

  • Bowman, W. S., Faye, G. H., Sutarno, R., McKeague, J. A., Kodama, H. (1979). Soil samples SO-1, SO-2, SO-3 and SO-4. Certified Reference Materials CANMET, Report 79-3, p. 32

  • CANMET (Canada Centre for Mineral and Energy Technology). (2003a). SO-2 to SO-4, Soil samples. Retrieved April 2003 from http://www.nrcan.gc.ca/mms/canmet-mtb/mmsl-lmsm/ccrmp/certificates/so-2.htm.

  • CANMET, (Canada Centre for Mineral and Energy Technology). (2003b). Retrieved April 2003 from http://www.rri.kyoto-u.ac.jp/ja/NAA/CANSO2.HTM.

  • Cappuyns, V., Herreweghe, S. V., Swennen, R., Ottenburgs, R., & Deckers, J. (2002). Arsenic pollution at the industrial site of Reppel-Bocholt (north Belgium). The Science of the Total Environment, 1–3, 217–240.

    Article  Google Scholar 

  • Carbonell-Barrachina, A., DeLaune, R. D., & Jugsujinda, A. (2002). Phosphogypsum chemistry under highly anoxic conditions. Waste Management, 22, 657–665.

    Article  CAS  Google Scholar 

  • Chen, M. (2001). Arsenic background concentrations in Florida, U.S.A. surface soils: Determination and interpretation. Environmental Forensics, 2, 117–126.

    Article  CAS  Google Scholar 

  • Chirenje, T., Ma, L. Q., & Zillioux, E. J. (2002). Determining arsenic distribution in urban soils: A comparison with nonurban soils. The Scientific World Journal, 2, 1404–1417.

    CAS  Google Scholar 

  • Christofides, G., Soldatos, T., Eleftheriadis, G., & Koroneos, A. (1998). Chemical and isotopic evidence for source contamination and crustal assimilation in the Hellenic Rhodope plutonic rocks. Acta Vulcanologica, 10, 305–318.

    Google Scholar 

  • Christofides, G., Koroneos, A., Soldatos, T., Eleftheriadis, G., & Kilias, A. (2001). Eocene magmatism (Sithonia and Elatia plutons) in the Internal Hellenides and implications for Eocene-Miocene geological evolution of the Rhodope Massif (Northern Greece). Acta Vulcanologica, 13, 73–89.

    Google Scholar 

  • Cui, Y. J., Zhai, R. H., Huang, Y. Z., Qiu, Y., & Liang, J. Z. (2005). Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environment International, 31, 784–90.

    Article  CAS  Google Scholar 

  • Davis, C. J. (1973). Statistics and data analysis in geology (p. 550). New York: Wiley.

    Google Scholar 

  • FAO (Food and Agriculture Organisation of the United Nations). (1974). Legend of the soil map of the world. Key to the FAO Soil Units in the FAO/UNESCO Soil Map of the World. Retrieved April 2003 http://www.fao.org/ag/agl/agll/key2-soil.stm.

  • FAO (Food and Agriculture Organisation of the United Nations). (2003). The digital soil map of the world notes, version 3.6, p. 21

  • Fernandez-Turiel, J. L., & Durán-Barrachina, M. E. (1989). A contribution to regional tin exploration in the Iberian Massif. Journal of Geochemical Exploration, 31, 295–305.

    Article  CAS  Google Scholar 

  • Fernandez-Turiel, J. L., Llorens, J. F., López-Vera, F., Gómez-Artola, C., Morell, I., & Gimeno, D. (2000). Strategy for water analysis using ICP–MS. Fresenius’ Journal of Analytical Chemistry, 368–6, 601–606.

    Article  Google Scholar 

  • Fernandez-Turiel, J. L., Aceñolaza, P., Medina, M. E., Llorens, J. F., & Sardi, F. (2001). Assessment of a smelter impact area using surface soils and plants. Environmental Geochemistry and Health, 23, 65–78.

    Article  CAS  Google Scholar 

  • Filippidis, A., Georgakopoulos, A., Kassoli-Fournaraki, A., Misaelides, P., Yiakkoupis, P., & Broussoulis, J. (1996). Trace element contents in composite samples of three lignite seams from the central part of the Drama lignite deposit, Macedonia, Greece. International Journal of Coal Geology, 29, 219–234.

    Article  CAS  Google Scholar 

  • Gallego, J. L. R., Ordóñez, A., & Loredo, J. (2002). Investigation of trace element sources from an industrialised area (Avilés, Northern Spain) using multivariate statistical methods. Environmental International, 27, 589–596.

    Article  CAS  Google Scholar 

  • Grigoriadou, A., Schwarzbauer, J., & Georgakopoulos, A. (2008a). Molecular indicators for pollution source identification in marine and terrestrial water of the industrial area of Kavala City, North Greece. Environmental Pollution, 151, 231–242.

    Article  CAS  Google Scholar 

  • Grigoriadou, A., Schwarzbauer, J., & Georgakopoulos, A. (2008b). Organic geochemical parameters for estimation of petrogenic inputs in the coastal area of Kavala City, Greece. Journal of Soils and Sediments, 8, 253–262.

    Article  CAS  Google Scholar 

  • Guo, H. R., & Tseng, Y. C. (2000). Arsenic in drinking water and bladder cancer: comparison between studies based on cancer registry and death certificates. Environmental Geochemistry and Health, 22, 83–91.

    Article  CAS  Google Scholar 

  • Guvenç, N., Alagha, O., & Tuncel, G. (2003). Investigation of soil multi-element composition in Antalya, Turkey. Environment International, 5, 631–640.

    Article  Google Scholar 

  • HNMS (Hellenic National Meteorological Service). (1978). Climatic data of the Greek network, period 1930–1975, p. 100 (in Greek).

  • Hesterberg, D. (1998). Biogeochemical cycles and processes leading to changes in mobility of chemicals in soils. Agriculture Ecosystem and Environment, 67, 121–33.

    Article  CAS  Google Scholar 

  • Islam, R. M. D., Salminen, R., & Lahermo, P. W. (2000). Arsenic and other toxic elemental contamination of groundwater, surfacewater and soil in Bangladesh and its possible effects on human health. Environmental Geochemistry and Health, 22, 33–53.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed., p. 413). New York: CRC.

    Google Scholar 

  • Kilias, A. A., & Mountrakis, D. M. (1998). Tertiary extension of the Rhodope massif associated with granite emplacement (Northern Greece). Acta Vulcanologica, 10, 331–337.

    Google Scholar 

  • Kilias, A. A., Falalakis, G., & Mountrakis, D. M. (1999). Cretaceous–Tertiary structures and kinematics of the Serbomacedonian metamorphic rocks and their relation to the exhumation of the Hellenic hinterland (Mace-donia, Greece). International Journal of Earth Sciences, 88, 513–531.

    Article  CAS  Google Scholar 

  • Lepeltier, C. (1969). A simplified statistical treatment of geochemical data by graphical representation. Economic Geology, 64, 538–550.

    Article  CAS  Google Scholar 

  • Lucho-Constantino, C. A., Álvarez-Suárez, M., Beltrán-Hernández, R. I., Prieto-García, F., & Poggi-Varaldo, H. M. (2005). A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater. Environment International, 31, 313–323.

    Article  CAS  Google Scholar 

  • Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochemical background—Can we calculate it? Environmental Geology, 39, 990–1000.

    Article  CAS  Google Scholar 

  • Pandey, P. K., Sharma, R., Roy, M., Roy, S., & Pandey, M. (2006). Arsenic contamination in the Kanker district of central-east India: Geology and health effects. Environmental Geochemistry and Health, 28, 409–420.

    Article  CAS  Google Scholar 

  • Pe-Piper, G., & Piper, D. J. W. (2002). The igneous rocks of Greece, the anatomy of an orogen (p. 573). Berlin: Gebrüder Borntraeger.

    Google Scholar 

  • Petalas, C., Pliakas, F., Diamantis, I., & Kallioras, A. (2004). Study of the distribution of precipitation in District of Eastern Macedonia and Thrace for the Period 1964–1998, Bulletin of the Geological Society of Greece vol. 36, 2004, Proceedings of the 10th International Congress, Thessaloniki, April 2004, vol. 2, pp. 1054–1063 (in Greek).

  • Pickering, W. F. (1986). Metal ion speciation—Soils and sediments (a review), Ore Geology Reviews 1 (pp. 83–146). Amsterdam: Elsevier.

    Google Scholar 

  • Ramsey, M. H. (1997). Sampling and sampling preparation. In R. Gill (Ed.), Modern analytical geochemistry, an introduction to quantitative chemical analysis techniques for earth, environmental and materials scientists (p. 329). England: Pearson Education Limited.

    Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background—Concept and reality. The Science of the Total Environment, 350, 12–27.

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: Critical comparison of methods of determination. The Science of the Total Environment, 346, 1–16.

    Article  CAS  Google Scholar 

  • Sampson, M. L., Bostick, B., Chiew, H., Hagan, J. M., & Shantz, A. (2008). Arsenicosis in Cambodia: Case studies and policy response. Applied Geochemistry, doi:10.1016/j.apgeochem.2008.06.022.

    Google Scholar 

  • Sastre, J., Sahuquillo, A., Vidal, M., & Rauret, G. (2002). Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462, 59–72.

    Article  CAS  Google Scholar 

  • Stanley, C. R., & Sinclair, A. J. (1987). Anomaly recognition for multielement geochemical data—A background characterization approach. Journal of Geochemical Exploration, 29, 333–353.

    Article  CAS  Google Scholar 

  • Theophanides, M., Anastassopoulou, J., & Theophanides, T. (2002a). A statistical study of disease-related mortalities due to environmental pollutants in Kavala, Greece, In: Environmental science and pollution research. 8th FECS Conference on Chemistry and the Environment, 2002, p. 44.

  • Theophanides, M., Anastassopoulou, J., Vasilakos, C., Maggos, T., & Theophanides, T. (2007). Mortality and pollution in several greek cities. Journal of Environmental Science and Health, Part A, 42, 741–746.

    Article  CAS  Google Scholar 

  • Theophanides, T., Vassilakos, Ch., Anastassopoulou, J., Maggos, T., Hatzianestis, J., & Bartzis, I. (2002b). Chemical characterization of VOCs in Nea Karvali area, Kavala, Greece, In: Environmental Science and Pollution Research, 8th FECS Conference on Chemistry and the Environment, 2002, pp. 45–46.

  • Vavelidis, M., Christofides, G., & Melfos, V. (1996). The Au–Ag bearing mineralization and placer gold of Palea Kavala (Macedonia, N. Greece), Terranes of Serbia. In: V. Knežević and B. Krstić (Eds.). The formation of the geologic framework of Serbia and the adjacent regions (pp. 311–316). Belgrade: Faculty of Mining and Geology, Brezovica.

  • Vavelidis, M., Melfos, V. & Eleftheriadis, G. (1997) Minerlaogy and microthermometric investigations in the Au-bearing sulphide mineralization of Palea Kavala (Macedonia, Greece). In: Papunen H. (ed). Mineral deposits: Research and exploration, where do they meet? Balkema, Rotterdam, 343–346.

  • Walsh, J. N., Gill, R., & Thirwall, M. F. (1997). Dissolution procedures for geochemical and environmental samples. In R. Gill (Ed.), Modern analytical geochemistry, an introduction to quantitative chemical analysis techniques for earth, environmental and materials scientists (p. 329). England: Pearson Education Limited.

    Google Scholar 

  • WHO (World Health Organization). (2008). Water sanitation and health, water-related diseases, arsenicosis. Retrieved 20 October 2008 from http://www.who.int/water_sanitation_health/diseas-es/arsenicosis/en/.

Download references

Acknowledgments

The authors would like to acknowledge the technical assistance provided by the personnel of the Faculty of Geology of the University of Barcelona, the SCT-UB, and ICTJA-CSIC, Barcelona, Spain. Georgios Papastergios, during this research, was under a scholarship from the Greek State Scholarships Foundation (IKY). This work was partially carried out in the framework of PEGEFA 2005SGR-00795 Research Consolidated Group, funded by AGAUR-DURSI, Generalitat de Catalunya. The authors gratefully acknowledge the comments of the anonymous reviewers that helped improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Papastergios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papastergios, G., Fernandez-Turiel, JL., Georgakopoulos, A. et al. Arsenic Background Concentrations in Surface Soils of Kavala Area, Northern Greece. Water Air Soil Pollut 209, 323–331 (2010). https://doi.org/10.1007/s11270-009-0201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0201-y

Keywords

Navigation