Skip to main content

Advertisement

Log in

Camelid nanobodies with high affinity for broad bean mottle virus: a possible promising tool to immunomodulate plant resistance against viruses

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Worldwide, plant viral infections decrease seriously the crop production yield, boosting the demand to develop new strategies to control viral diseases. One of these strategies to prevent viral infections, based on the immunomodulation faces many problems related to the ectopic expression of specific antibodies in planta. Camelid nanobodies, expressed in plants, may offer a solution as they are an attractive tool to bind efficiently to viral epitopes, cryptic or not accessible to conventional antibodies. Here, we report a novel, generic approach that might lead to virus resistance based on the expression of camelid specific nanobodies against Broad bean mottle virus (BBMV). Eight nanobodies, recognizing BBMV with high specificity and affinity, were retrieved after phage display from a large ‘immune’ library constructed from an immunized Arabic camel. By an in vitro assay we demonstrate how three nanobodies attenuate the BBMV spreading in inoculated Vicia faba plants. Furthermore, the in planta transient expression of these three selected nanobodies confirms their virus neutralizing capacity. In conclusion, this report supports that plant resistance against viral infections can be achieved by the in vivo expression of camelid nanobodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbady AQ, Al-Mariri A, Zarkawi M, Al-Assad A, Muyldermans S (2011) Evaluation of a nanobody phage display library constructed from a Brucella-immunised camel. Vet Immunol Immunopathol 142(1–2):49–56

    Article  CAS  PubMed  Google Scholar 

  • Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M (2012) scFv Antibody: principles and Clinical Application. Clin Dev Immunol 2012:980250

    Article  PubMed Central  PubMed  Google Scholar 

  • Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414(3):521–526

    Article  CAS  PubMed  Google Scholar 

  • Bawden FC, Chaudhuri RP, Kassanis B (2008) Some properties of broad-bean mottle virus. Ann Appl Biol 38(4):774–784

    Article  Google Scholar 

  • Beekwilder J, Houwelingen A, Beckhoven J, Speksnijder A (2008) Stable recombinant alpaca antibodies for detection of Tulip virus X. Eur J Plant Pathol 121:477–485

    Article  CAS  Google Scholar 

  • Boonrod K, Galetzka D, Nagy PD, Conrad U, Krczal G (2004) Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nat Biotechnol 22(7):856–862

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz D, Ayadi M, Bidani A, Rouis S, Nouri-Ellouz O, Jellouli R, Drira N, Gargouri-Bouzid R (2009) A stable cytosolic expression of VH antibody fragment directed against PVY NIa protein in transgenic potato plant confers partial protection against the virus. Plant Sci 176(4):489–496

    Article  CAS  Google Scholar 

  • Bujarski JJ (1998) Bromovirus isolation and RNA extraction. Methods Mol Biol 81:183–188

    CAS  PubMed  Google Scholar 

  • Chae JS, Choi JK, Lim HT, Cha SH (2001) Generation of a murine single chain Fv (scFv) antibody specific for cucumber mosaic virus (CMV) using a phage display library. Mol Cells 11(1):7–12

    CAS  PubMed  Google Scholar 

  • Conrath KE, Lauwereys M, Galleni M, Matagne A, Frere JM, Kinne J, Wyns L, Muyldermans S (2001) Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrob Agents Chemother 45(10):2807–2812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Buck S, Virdi V, De Meyer T, De Wilde K, Piron R, Nolf J, Van Lerberge E, De Paepe A, Depicker A (2012) Production of camel-like antibodies in plants. Methods Mol Biol 911:305–324

    Article  PubMed  Google Scholar 

  • De Buck S, Nolf J, De Meyer T, Virdi V, De Wilde K, Van Lerberge E, Van Droogenbroeck B, Depicker A (2013) Fusion of an Fc chain to a VHH boosts the accumulation levels in Arabidopsis seeds. Plant Biotechnol J 11(8):1006–1016

    Article  PubMed  Google Scholar 

  • De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S, Wyns L (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A 103(12):4586–4591

    Article  PubMed Central  PubMed  Google Scholar 

  • De Jaeger G, De Wilde C, Eeckhout D, Fiers E, Depicker A (2000) The plantibody approach: expression of antibody genes in plants to modulate plant metabolism or to obtain pathogen resistance. Plant Mol Biol 43(4):419–428

    Article  PubMed  Google Scholar 

  • De Meyer T, Eeckhout D, De Rycke R, De Buck S, Muyldermans S, Depicker A (2014a) Generation of VHH antibodies against the Arabidopsis thaliana seed storage proteins. Plant Mol Biol 84(1–2):83–93

    Article  PubMed  Google Scholar 

  • De Meyer T, Muyldermans S, Depicker A (2014b) Nanobody-based products as research and diagnostic tools. Trends Biotechnol 32(5):263–270

    Article  PubMed  Google Scholar 

  • Desmyter A, Farenc C, Mahony J, Spinelli S, Bebeacua C, Blangy S, Veesler D, van Sinderen D, Cambillau C (2013) Viral infection modulation and neutralization by camelid nanobodies. Proc Natl Acad Sci U S A 110(15):E1371–E1379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Di Carli M, Villani ME, Bianco L, Lombardi R, Perrotta G, Benvenuto E, Donini M (2010) Proteomic analysis of the plant-virus interaction in cucumber mosaic virus (CMV) resistant transgenic tomato. J Proteome Res 9(11):5684–5697

    Article  PubMed  Google Scholar 

  • Dzianott AM, Bujarski JJ (1991) The nucleotide sequence and genome organization of the RNA-1 segment in two bromoviruses: broad bean mottle virus and cowpea chlorotic mottle virus. Virology 185(2):553–562

    Article  CAS  PubMed  Google Scholar 

  • Fecker LF, Koenig R, Obermeier C (1997) Nicotiana benthamiana plants expressing beet necrotic yellow vein virus (BNYVV) coat protein-specific scFv are partially protected against the establishment of the virus in the early stages of infection and its pathogenic effects in the late stages of infection. Arch Virol 142(9):1857–1863

    Article  CAS  PubMed  Google Scholar 

  • Fortass M, Bos L (1992) Broad bean mottle virus in Morocco; variability in interaction with food legume species and seed transmission in faba bean, pea and chickpea. Neth J Plant Pathol 98:329–342

    Article  Google Scholar 

  • Fukuzawa N, Ishihara T, Itchoda N, Tabayashi N, Kataoka C, Masuta C, Matsumura T (2011) Risk-managed production of bioactive recombinant proteins using a novel plant virus vector with a helper plant to complement viral systemic movement. Plant Biotechnol J 9(1):38–49

    Article  CAS  PubMed  Google Scholar 

  • Gargouri-Bouzid R, Jaoua L, Rouis S, Saidi MN, Bouaziz D, Ellouz R (2006) PVY-resistant transgenic potato plants expressing an anti-NIa protein scFv antibody. Mol Biotechnol 33(2):133–140

    Article  CAS  PubMed  Google Scholar 

  • Gibbs WW (2005) Nanobodies. Sci Am 293(2):78–83

    Article  PubMed  Google Scholar 

  • Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77(1):13–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harper K, Kerschbaumer RJ, Ziegler A, Macintosh SM, Cowan GH, Himmler G, Mayo MA, Torrance L (1997) A scFv-alkaline phosphatase fusion protein which detects potato leafroll luteovirus in plant extracts by ELISA. J Virol Methods 63(1–2):237–242

    Article  CAS  PubMed  Google Scholar 

  • Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, Vincke C, Muyldermans S (2013) Nanobodies and their potential applications. Nanomedicine (Lond) 8(6):1013–1026

    Article  CAS  Google Scholar 

  • Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23(9):1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Ismaili A, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Memari HR (2007) Production and characterization of anti-(mucin MUC1) single-domain antibody in tobacco (Nicotiana tabacum cultivar Xanthi). Biotechnol Appl Biochem 47(Pt 1):11–19

    CAS  PubMed  Google Scholar 

  • Jobling SA, Jarman C, Teh MM, Holmberg N, Blake C, Verhoeyen ME (2003) Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat Biotechnol 21(1):77–80

    Article  CAS  PubMed  Google Scholar 

  • Kastelic D, Frkovic-Grazio S, Baty D, Truan G, Komel R, Pompon D (2009) A single-step procedure of recombinant library construction for the selection of efficiently produced llama VH binders directed against cancer markers. J Immunol Methods 350(1–2):54–62

    Article  CAS  PubMed  Google Scholar 

  • Ladner RC (2007) Mapping the epitopes of antibodies. Biotechnol Genet Eng Rev 24:1–30

    Article  CAS  PubMed  Google Scholar 

  • Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Holzer W, De Genst E, Wyns L, Muyldermans S (1998) Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J 17(13):3512–3520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lefranc MP, Pommie C, Ruiz M, Giudicelli V, Foulquier E, Truong L, Thouvenin-Contet V, Lefranc G (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27(1):55–77

    Article  CAS  PubMed  Google Scholar 

  • Lin NS, Hsu YH, Hsu HT (1990) Immunological detection of plant viruses and a mycoplasma-like organism by direct tissue blotting on nitrocellulose membranes. Phytopathology 80:824–828

    Article  CAS  Google Scholar 

  • Makkouk KM, Bos L, Rizkallah A, Azzam OI, Katul L (1988) Broad bean mottle virus: identification, host range, serology, and occurrence on faba bean (Vicia faba) in West Asia and North Africa. Neth J Plant Pathol 94(4):195–212

    Article  Google Scholar 

  • Makkouk K, Pappu H, Kumari SG (2012) Virus diseases of peas, beans, and faba bean in the Mediterranean region. Adv Virus Res 84:367–402

    Article  PubMed  Google Scholar 

  • Marasco WA (1995) Intracellular antibodies (intrabodies) as research reagents and therapeutic molecules for gene therapy. Immunotechnology 1(1):1–19

    Article  CAS  PubMed  Google Scholar 

  • Monegal A, Olichon A, Bery N, Filleron T, Favre G, de Marco A (2012) Single domain antibodies with VH hallmarks are positively selected during panning of llama (Lama glama) naive libraries. Dev Comp Immunol 36(1):150–156

    Article  CAS  PubMed  Google Scholar 

  • Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797

    Article  CAS  PubMed  Google Scholar 

  • Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H, Rothbauer U, Stijlemans B, Tillib S, Wernery U, Wyns L, Hassanzadeh-Ghassabeh G, Saerens D (2009) Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 128(1–3):178–183

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VK, Hamers R, Wyns L, Muyldermans S (2000) Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 19(5):921–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen VK, Desmyter A, Muyldermans S (2001) Functional heavy-chain antibodies in Camelidae. Adv Immunol 79:261–296

    Article  CAS  PubMed  Google Scholar 

  • Nickel H, Kawchuk L, Twyman RM, Zimmermann S, Junghans H, Winter S, Fischer R, Prufer D (2008) Plantibody-mediated inhibition of the potato leafroll virus P1 protein reduces virus accumulation. Virus Res 136(1–2):140–145

    Article  CAS  PubMed  Google Scholar 

  • Nolke G, Cobanov P, Uhde-Holzem K, Reustle G, Fischer R, Schillberg S (2009) Grapevine fanleaf virus (GFLV)-specific antibodies confer GFLV and Arabis mosaic virus (ArMV) resistance in Nicotiana benthamiana. Mol Plant Pathol 10(1):41–49

    Article  PubMed  Google Scholar 

  • Orecchia M, Nolke G, Saldarelli P, Dell’Orco M, Uhde-Holzem K, Sack M, Martelli G, Fischer R, Schillberg S (2008) Generation and characterization of a recombinant antibody fragment that binds to the coat protein of grapevine leafroll-associated virus 3. Arch Virol 153(6):1075–1084

    Article  CAS  PubMed  Google Scholar 

  • Prins M, Lohuis D, Schots A, Goldbach R (2005) Phage display-selected single-chain antibodies confer high levels of resistance against tomato spotted wilt virus. J Gen Virol 86(Pt 7):2107–2113

    Article  CAS  PubMed  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9(1):73–83

    CAS  PubMed  Google Scholar 

  • Saerens D, Kinne J, Bosmans E, Wernery U, Muyldermans S, Conrath K (2004) Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J Biol Chem 279(50):51965–51972

    Article  CAS  PubMed  Google Scholar 

  • Saerens D, Conrath K, Govaert J, Muyldermans S (2008) Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains. J Mol Biol 377(2):478–488

    Article  CAS  PubMed  Google Scholar 

  • Safarnejad MR, Jouzani GS, Tabatabaei M, Twyman RM, Schillberg S (2011) Antibody-mediated resistance against plant pathogens. Biotechnol Adv 29(6):961–971

    Article  CAS  PubMed  Google Scholar 

  • Saldarelli P, Keller H, Dell’Orco M, Schots A, Elicio V, Minafra A (2005) Isolation of recombinant antibodies (scFvs) to grapevine virus B. J Virol Methods 124(1–2):191–195

    Article  CAS  PubMed  Google Scholar 

  • Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3(10):789–798

    Article  CAS  PubMed  Google Scholar 

  • Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3(1):63–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Susi P, Ziegler A, Torrance L (1998) Selection of single-chain variable fragment antibodies to black currant reversion associated virus from a synthetic phage display library. Phytopathology 88(3):230–233

    Article  CAS  PubMed  Google Scholar 

  • Tavladoraki P, Benvenuto E, Trinca S, De Martinis D, Cattaneo A, Galeffi P (1993) Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366(6454):469–472

    Article  CAS  PubMed  Google Scholar 

  • Teh YH, Kavanagh TA (2010) High-level expression of Camelid nanobodies in Nicotiana benthamiana. Transgenic Res 19(4):575–586

    Article  CAS  PubMed  Google Scholar 

  • Terrada E, Kerschbaumer RJ, Giunta G, Galeffi P, Himmler G, Cambra M (2000) Fully “recombinant enzyme-linked immunosorbent assays” Using genetically engineered single-chain antibody fusion proteins for detection of citrus tristeza virus. Phytopathology 90(12):1337–1344

    Article  CAS  PubMed  Google Scholar 

  • Tokuhara D, Alvarez B, Mejima M, Hiroiwa T, Takahashi Y, Kurokawa S, Kuroda M, Oyama M, Kozuka-Hata H, Nochi T, Sagara H, Aladin F, Marcotte H, Frenken LG, Iturriza-Gomara M, Kiyono H, Hammarstrom L, Yuki Y (2013) Rice-based oral antibody fragment prophylaxis and therapy against rotavirus infection. J Clin Invest 123(9):3829–3838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toth RL, Harper K, Mayo MA, Torrance L (1999) Fusion proteins of single-chain variable fragments derived from phage display libraries are effective reagents for routine diagnosis of potato leafroll virus infection in potato. Phytopathology 89(11):1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Vanlandschoot P, Stortelers C, Beirnaert E, Ibanez LI, Schepens B, Depla E, Saelens X (2011) Nanobodies(R): new ammunition to battle viruses. Antivir Res 92(3):389–407

    Article  CAS  PubMed  Google Scholar 

  • Villani ME, Roggero P, Bitti O, Benvenuto E, Franconi R (2005) Immunomodulation of cucumber mosaic virus infection by intrabodies selected in vitro from a stable single-framework phage display library. Plant Mol Biol 58(3):305–316

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33(5):949–956

    Article  CAS  PubMed  Google Scholar 

  • Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, Urrutia M, Cauerhff A, Danquah W, Rissiek B, Scheuplein F, Schwarz N, Adriouch S, Boyer O, Seman M, Licea A, Serreze DV, Goldbaum FA, Haag F, Koch-Nolte F (2009) Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol 198(3):157–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White RA, Fischbach FA (1973) An x-ray scattering investigation of broad bean mottle virus in solutions of various electron densities. J Mol Biol 75(3):549–558

    Article  CAS  PubMed  Google Scholar 

  • Winichayakul S, Pernthaner A, Scott R, Vlaming R, Roberts N (2009) Head-to-tail fusions of camelid antibodies can be expressed in planta and bind in rumen fluid. Biotechnol Appl Biochem 53(Pt 2):111–122

    Article  CAS  PubMed  Google Scholar 

  • Zakri AM, Ziegler A, Torrance L, Fischer R, Commandeur U (2010) Generation and characterization of a scFv against recombinant coat protein of the geminivirus tomato leaf curl New Delhi virus. Arch Virol 155(3):335–342

    Article  CAS  PubMed  Google Scholar 

  • Ziegler A, Torrance L (2002) Applications of recombinant antibodies in plant pathology. Mol Plant Pathol 3(5):401–407

    Article  CAS  PubMed  Google Scholar 

  • Ziegler A, Torrance L, Macintosh SM, Cowan GH, Mayo MA (1995) Cucumber mosaic cucumovirus antibodies from a synthetic phage display library. Virology 214(1):235–238

    Article  CAS  PubMed  Google Scholar 

  • Ziegler A, Macintosh SM, Torrance L, Simon W, Slabas AR (1997) Recombinant antibody fragments that detect enoyl acyl carrier protein reductase in Brassica napus. Lipids 32(8):805–809

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Director General of the Atomic Energy Commission of Syria and the head of the Molecular Biology and Biotechnology department for their continuous support throughout this work. We thank Mr. Adnan Al-Assad at General Commission for Scientific Agricultural Research (GCSAR), Deir El-Hagar Station for Camelid Research (Damascus, Syria), for housing and immunizing camels. We also thank the lab. of Patrice Dunoyer, IBMP/CNRS institute, Strasbourg, FRANCE for kindly providing pBI61-P19 construct and the lab of Sunil K. Mukherjee, ICGEB, New-Delhi, INDIA for kindly providing empty pBI121 vector.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Ghannam or Abdul Qader Abbady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghannam, A., Kumari, S., Muyldermans, S. et al. Camelid nanobodies with high affinity for broad bean mottle virus: a possible promising tool to immunomodulate plant resistance against viruses. Plant Mol Biol 87, 355–369 (2015). https://doi.org/10.1007/s11103-015-0282-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0282-5

Keywords

Navigation