Skip to main content
Log in

Concerning Order of Convergence for Subdivision

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We discuss order of convergence for subdivision algorithms, in the scalar-valued and the vector-valued case. In order to find the generic order, the usual definition of convergence order is extended, refering to a proper quasi interpolant operator whose representation on polynomial spaces can be constructively determined with recourse to properties of the subdivision mask. Assuming stability and smoothness of the limit functions, the approximation order of the quasi interpolant operator determines the order of convergence of subdivision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Cavaretta, W. Dahmen and C.A. Micchelli, Stationary subdivision, Memoirs Amer. Math. Soc. 93(453) (1991).

  2. D.-R. Chen, R.-Q. Jia and S.D. Riemenschneider, Convergence of vector subdivision schemes in Sobolev spaces, Appl. Comput. Harmon. Anal. 12 (2002) 128–149.

    Google Scholar 

  3. A. Cohen, N. Dyn and D. Levin, Stability and inter-dependence of matrix subdivision schemes, in: Advanced Topics in Multivariate Approximation, eds. F. Fontanella, K. Jetter and P. J. Laurent (World Scientific, Singapore, 1996) pp. 33–45.

    Google Scholar 

  4. C. Conti and K. Jetter, A new subdivision method for bivariate splines on the four-directional mesh, J. Comput. Appl. Math. 119 (2000) 81–96.

    Google Scholar 

  5. C. Conti and G. Zimmermann, Interpolatory rank-1 vector subdivision schemes, Comput. Aided Geom. Design 21 (2004) 341–351.

    Google Scholar 

  6. W. Dahmen, N. Dyn and D. Levin, On the convergence rate of subdivision algorithms for box spline surfaces, Constr. Approx. 1 (1985) 305–322.

    Google Scholar 

  7. N. Dyn, Subdivision schemes in CAGD, in: Advances in Numerical Analysis, Vol. II: Wavelets, Subdivision Algorithms and Radial Basis Functions, ed. W.A. Light (Oxford Univ. Press, Oxford, 1992) pp. 36–104.

    Google Scholar 

  8. N. Dyn and D. Levin, Matrix subdivision-analysis by factorization, in: Approximation Theory, ed. B.D. Bojanov (DARBA, Sofia, 2002) pp. 187–211.

    Google Scholar 

  9. N. Dyn and D. Levin, Subdivision schemes in geometric modelling, Acta Numerica (2002) 1–72.

  10. B. Han, Vector cascade algorithms and refinable function vectors in Sobolev spaces, J. Approx. Theory 124 (2003) 44–88.

    Google Scholar 

  11. B. Han and R.Q. Jia, Multivariate refinement equations and convergence of subdivision schemes, SIAM J. Math. Anal. 29 (1998) 1177–1199.

    Google Scholar 

  12. K. Jetter, Multivariate approximation from the cardinal interpolation point of view, in: Approximation Theory, Vol. VII, eds. E.W. Cheney, C.K. Chui and L.L. Schumaker (Academic Press, Boston, 1992) pp. 131–161.

    Google Scholar 

  13. K. Jetter and G. Plonka, A survey on L 2-approximation orders from shift-invariant spaces, in: Multivariate Approximation and Applications, eds. N. Dyn, D. Leviatan, D. Levin and A. Pinkus (Cambridge Univ. Press, Cambridge, 2001) pp. 73–111.

    Google Scholar 

  14. K. Jetter and D.-X. Zhou, Order of linear approximation from shift-invariant spaces, Constr. Approx. 11 (1995) 423–438.

    Google Scholar 

  15. K. Jetter and G. Zimmermann, Polynomial reproduction in subdivision, Adv. Comput. Math. 20 (2004) 67–86.

    Google Scholar 

  16. K. Jetter and G. Zimmermann, Constructing polynomial surfaces from vector subdivision schemes, in: Constructive Function Theory, Varna (2002), ed. B.D. Bojanov (DARBA, Sofia, 2003) pp. 327–332.

    Google Scholar 

  17. R.Q. Jia, Subdivision schemes in L p spaces, Adv. Comput. Math. 3 (1995) 309–341.

    Google Scholar 

  18. R.Q. Jia, Convergence rates of cascade algorithms, Proc. Amer. Math. Soc. 131 (2003) 1739–1749.

    Google Scholar 

  19. R.Q. Jia, Q.T. Jiang and S.L. Lee, Convergence of cascade algorithms in Sobolev spaces and integrals of wavelets, Numer. Math. 91 (2002) 453–473.

    Google Scholar 

  20. R.Q. Jia and J.-J. Lei, Approximation by multiinteger translates of functions having global support, J. Approx. Theory 72 (1993) 2–23.

    Google Scholar 

  21. J. Lebrun and M. Vetterli, High order balanced multiwavelets: Theory, factorization, and design, IEEE Trans. Signal Process. 49 (2001) 1918–1930.

    Google Scholar 

  22. C.A. Micchelli and T. Sauer, Sobolev norm convergence of stationary subdivision schemes, in: Surface Fitting and Multiresolution Methods, eds. A. Le Méhauté, C. Rabut and L.L. Schumaker (Vanderbilt Univ. Press, Nashville, TN, 1997) pp. 245–260.

    Google Scholar 

  23. V. Strela, Multiwavelets: Theory and applications, Ph.D. thesis, Mass. Institute of Technology, USA (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conti, C., Jetter, K. Concerning Order of Convergence for Subdivision. Numer Algor 36, 345–363 (2004). https://doi.org/10.1007/s11075-004-3896-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-004-3896-2

Navigation