Skip to main content
Log in

Tumour infiltrating lymphocytes and PD-L1 expression as potential predictors of outcome in patients with malignant pleural mesothelioma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Malignant pleural mesothelioma (MPM) is a rare and aggressive form of tumour. Some mesotheliomas have been proven to be highly immunogenic. Here, we investigated the correlation between tumour infiltrating lymphocytes (TILs) or programmed cell death ligand 1 (PD-L1) expression with overall survival (OS) in patients with MPM. 62 Paraffin-embedded formalin fixed (PEFF) samples were analysed for TILs and PD-L1 expression. Patients were divided in 4 groups according to a cut-off of the percentage of TILs found per sample as measured by immunohistichemistry: “0” or absent (between 0 and 5%), “1” or low (between 6 and 25%), “2” or moderate (between 26 and 50%) and “3” or high (between 51 and 75%). OS was then correlated with different TILs’ expression patterns. Moreover, PD-L1 expression was assessed within the tumour as well as in the adjacent stroma on the same samples. Higher expression of peritumoral TILs (Group 2 + 3) versus Group 0 and 1 correlated with improved OS (p-value = 0.02). On the contrary PD-L1 expression seemed to be inversely correlated with clinical outcomes, even in the absence of statistical significance (HR 1.76; p = 0.083 95% IC 0.92–3.36 in areas within the tumour; HR 1.60; p = 0.176 95%; IC 0.80–3.19 in areas within the stroma). No relationship between TILs and PD-L1 expression was identified. Our research supports the use of TILs and PD-L1 expression as potential outcome predictors in patients with MPM. The use of TILs and PD-L1 as biomarkers for checkpoint inhibitors’ efficacy warrants future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Robinson BW, Musk AW, Lake RA (2005) Malignant mesothelioma. Lancet 366:397–408. https://doi.org/10.1016/S0140-6736(05)67025-0

    Article  CAS  PubMed  Google Scholar 

  2. Vogelzang NJ, Rusthoven JJ, Symanowski J et al (2003) Phase III study of Pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21:2636–2644. https://doi.org/10.1200/JCO.2003.11.136

    Article  CAS  PubMed  Google Scholar 

  3. Hassan R, Cohen SJ, Phillips M et al (2010) Phase I clinical trial of the chimeric anti-mesothelin monoclonal antibody MORAb-009 in patients with mesothelin-expressing cancers. Clin Cancer Res 16:6132–6138. https://doi.org/10.1158/1078-0432.CCR-10-2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gralla RJ, Hollen PJ, Liepa AM, et al (2003) Improving quality of life in patients with malignant pleural mesothelioma: results of the randomized pemetrexed + cisplatin vs. cisplatin trial using the lcss-Meso instrument [abstract 2496] Proc Am Soc Clin Oncol 22

  5. Leigh RA, Webster I (1982) Lymphocytic infiltration of pleural mesothelioma and its significance for survival. S Afr Med J 61:1007–1009

    CAS  PubMed  Google Scholar 

  6. Robinson BW, Robinson C, Lake RA (2001) Localised spontaneous regression in mesothelioma—possible immunological mechanism. Lung Cancer 32:197–201

    Article  CAS  PubMed  Google Scholar 

  7. Atanackovic D, Block A, de Weerth A et al (2004) Characterization of effusion-infiltrating T cells: benign versus malignant effusions. Clin Cancer Res 10:2600–2608

    Article  CAS  PubMed  Google Scholar 

  8. DeLong P, Carroll RG, Henry AC et al (2005) Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma. Cancer Biol Ther 4:342–346

    Article  CAS  PubMed  Google Scholar 

  9. Meloni F, Morosini M, Solari N et al (2006) Foxp3 expressing CD4+ CD25+ and CD8+ CD28− T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum Immunol 67:1–12. https://doi.org/10.1016/j.humimm.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  10. Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Currie AJ, Prosser A, McDonnell A et al (2009) Dual control of antitumor CD8 T cells through the programmed death-1/programmed death-ligand 1 pathway and immunosuppressive CD4 T cells: regulation and counterregulation. J Immunol 183:7898–7908. https://doi.org/10.4049/jimmunol.0901060

    Article  CAS  PubMed  Google Scholar 

  12. Mansfield AS, Roden AC, Peikert T et al (2014) B7-H1 expression in malignant pleural mesothelioma is associated with sarcomatoid histology and poor prognosis. J Thorac Oncol 9:1036–1040. https://doi.org/10.1097/JTO.0000000000000177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cedrés S, Ponce-Aix S, Zugazagoitia J et al (2015) Analysis of expression of programmed cell death 1 ligand 1 (PD-L1) in malignant pleural mesothelioma (MPM). PLoS ONE 10:e0121071. https://doi.org/10.1371/journal.pone.0121071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamada N, Oizumi S, Kikuchi E et al (2010) CD8 + tumor-infiltrating lymphocytes predict favorable prognosis in malignant pleural mesothelioma after resection. Cancer Immunol Immunother 59:1543–1549. https://doi.org/10.1007/s00262-010-0881-6

    Article  CAS  PubMed  Google Scholar 

  15. Ujiie H, Kadota K, Nitadori J-I et al (2015) The tumoral and stromal immune microenvironment in malignant pleural mesothelioma: a comprehensive analysis reveals prognostic immune markers. Oncoimmunology 4:e1009285. https://doi.org/10.1080/2162402X.2015.1009285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Salgado R, Denkert C, Demaria S et al (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26:259–271. https://doi.org/10.1093/annonc/mdu450

    Article  CAS  PubMed  Google Scholar 

  17. Anraku M, Cunningham KS, Yun Z et al (2008) Impact of tumor-infiltrating T cells on survival in patients with malignant pleural mesothelioma. J Thorac Cardiovasc Surg 135:823–829. https://doi.org/10.1016/j.jtcvs.2007.10.026

    Article  PubMed  Google Scholar 

  18. Kiyotani K, Park J-H, Inoue H et al (2017) Integrated analysis of somatic mutations and immune microenvironment in malignant pleural mesothelioma. Oncoimmunology 6:e1278330. https://doi.org/10.1080/2162402X.2016.1278330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pasello G, Zago G, Lunardi F et al (2018) Malignant pleural mesothelioma immune microenvironment and checkpoint expression: correlation with clinical–pathological features and intratumor heterogeneity over time. Ann Oncol 29:1258–1265. https://doi.org/10.1093/annonc/mdy086

    Article  CAS  PubMed  Google Scholar 

  20. Asano Y, Kashiwagi S, Goto W et al (2017) Prediction of survival after neoadjuvant chemotherapy for breast cancer by evaluation of tumor-infiltrating lymphocytes and residual cancer burden. BMC Cancer 17:888. https://doi.org/10.1186/s12885-017-3927-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee HJ, Seo J-Y, Ahn J-H et al (2013) Tumor-associated lymphocytes predict response to neoadjuvant chemotherapy in breast cancer patients. J Breast Cancer 16:32. https://doi.org/10.4048/jbc.2013.16.1.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Denkert C, Loibl S, Noske A et al (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28:105–113. https://doi.org/10.1200/JCO.2009.23.7370

    Article  CAS  PubMed  Google Scholar 

  23. Yamaguchi R, Tanaka M, Yano A et al (2012) Tumor-infiltrating lymphocytes are important pathologic predictors for neoadjuvant chemotherapy in patients with breast cancer. Hum Pathol 43:1688–1694. https://doi.org/10.1016/j.humpath.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  24. Wang K, Xu J, Zhang T, Xue D (2016) Tumor-infiltrating lymphocytes in breast cancer predict the response to chemotherapy and survival outcome: a meta-analysis. Oncotarget 7:44288–44298. https://doi.org/10.18632/oncotarget.9988

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goode EL, Block MS, Kalli KR et al (2017) Dose-response association of CD8 tumor-infiltrating lymphocytes and survival time in high-grade serous ovarian cancer. JAMA Oncol 3:e173290. https://doi.org/10.1001/jamaoncol.2017.3290

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800. https://doi.org/10.1038/nm730

    Article  CAS  PubMed  Google Scholar 

  27. Fanoni D, Tavecchio S, Recalcati S et al (2011) New monoclonal antibodies against B-cell antigens: possible new strategies for diagnosis of primary cutaneous B-cell lymphomas. Immunol Lett 134:157–160. https://doi.org/10.1016/j.imlet.2010.09.022

    Article  CAS  PubMed  Google Scholar 

  28. Sakane T, Murase T, Okuda K et al (2018) A comparative study of PD-L1 immunohistochemical assays with four reliable antibodies in thymic carcinoma. Oncotarget 9:6993–7009. https://doi.org/10.18632/oncotarget.24075

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sobhani N, Corona SP, Bonazza D et al (2017) Advances in systemic therapy for malignant mesothelioma: future perspectives. Future Oncol 13:2083–2101. https://doi.org/10.2217/fon-2017-0224

    Article  CAS  PubMed  Google Scholar 

  30. Hassan R, Thomas A, Alewine C et al (2016) Mesothelin immunotherapy for cancer: ready for prime time? J Clin Oncol 34:4171–4179. https://doi.org/10.1200/JCO.2016.68.3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jahan T, Hassan R, Alley E et al (2016) Deferred publication: mesothelioma 208O_PR CRS-207 with chemotherapy (chemo) in malignant pleural mesothelioma (MPM): results from a phase 1b trial. J Thorac Oncol 11:4–156. https://doi.org/10.1016/S1556-0864(16)30330-6

    Article  Google Scholar 

  32. Hellstrom I, Ledbetter JA, Scholler N et al (2001) CD3-mediated activation of tumor-reactive lymphocytes from patients with advanced cancer. Proc Natl Acad Sci USA 98:6783–6788. https://doi.org/10.1073/pnas.021557498

    Article  CAS  PubMed  Google Scholar 

  33. Alley EW, Lopez J, Santoro A et al (2017) Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol 18:623–630. https://doi.org/10.1016/S1470-2045(17)30169-9

    Article  CAS  PubMed  Google Scholar 

  34. Quispel-Janssen J, van der Noort V, de Vries JF et al (2018) PD-1 blockade with nivolumab in patients with recurrent malignant pleural mesothelioma. J Thorac Oncol. https://doi.org/10.1016/j.jtho.2018.05.038

    Article  PubMed  Google Scholar 

  35. Fennell DA, Kirkpatrick E, Cozens K et al (2018) CONFIRM: a double-blind, placebo-controlled phase III clinical trial investigating the effect of nivolumab in patients with relapsed mesothelioma: study protocol for a randomised controlled trial. Trials 19:233. https://doi.org/10.1186/s13063-018-2602-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Desai A, Karrison T, Rose B et al (2018) Phase II trial of pembrolizumab (P) in patients (pts) with previously-treated mesothelioma (MM). J Clin Oncol 36:8565–8565. https://doi.org/10.1200/JCO.2018.36.15_suppl.8565

    Article  Google Scholar 

  37. Thapa B, Salcedo A, Lin X et al (2017) The immune microenvironment, genome-wide copy number aberrations, and survival in mesothelioma. J Thorac Oncol 12:850–859. https://doi.org/10.1016/j.jtho.2017.02.013

    Article  PubMed  Google Scholar 

  38. Lantuejoul S, Le Stang N, Damiola F et al (2017) PD-L1 testing for immune checkpoint inhibitors in mesothelioma: for want of anything better? J Thorac Oncol 12:778–781. https://doi.org/10.1016/j.jtho.2017.03.018

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by Fondazione “Aldo Duca” and Progetto FRA 2016–2017, Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Università degli Studi di Trieste.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sobhani.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent for publication was obtained from all authors of this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2589 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhani, N., Roviello, G., Pivetta, T. et al. Tumour infiltrating lymphocytes and PD-L1 expression as potential predictors of outcome in patients with malignant pleural mesothelioma. Mol Biol Rep 46, 2713–2720 (2019). https://doi.org/10.1007/s11033-019-04715-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04715-9

Keywords

Navigation