Skip to main content
Log in

Towards an operational aqueous phase chemistry mechanism for regional chemistry-transport models: CAPRAM-RED and its application to the COSMO-MUSCAT model

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Mechanism reductions of the detailed aqueous phase chemistry mechanism CAPRAM 3.0i are performed. Manual methods and automatic techniques are both applied in order to provide a less computationally intensive mechanism which is operational in regional chemistry transport models (CTMs). The finally reduced mechanism contains less than 200 reactions (4 times smaller than the detailed CAPRAM 3.0i) and describes the main characteristics of inorganic and organic aqueous phase processes occurring in tropospheric warm clouds. Most of the chemical reduction potential is realized in the CAPRAM 3.0i organic chemistry. The number of aqueous phase species decreases from 380 in the full mechanism to 130 in the final reduced version. The calculated percentage deviations between the full and reduced mechanism are on average below 5% for the most important organic and inorganic target compounds such as oxidants, inorganic and organic acids, carbonyls and alcohols. Comparisons of the required CPU times between the full and reduced mechanisms show reductions of approximately 40%. 2-D test simulations with the CTM MUSCAT were performed using prescribed meteorological conditions in order to examine the applicability of the reduced mechanism at regional scale. Simulations with the reduced CAPRAM 3.0i mechanism and a much less complex mechanism with only limited inorganic chemistry (INORG) were compared to evaluate the effects of more detailed chemistry. The model results show large differences in the level of oxidants and the inorganic and organic mass processing. Prospectively, the reduced mechanism represents the basis for studying aerosol cloud processing effects at regional scale with future CTMs and will allow more adequate interpretation of field data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C2.4:

CAPRAM2.4: Inorganic chemistry mechanism + C1-C2 organic chemistry

C2.4cond:

Manually condensed CAPRAM2.4 mechanism

C2.4ISSA:

Automatically reduced CAPRAM2.4 mechanism (ISSA method)

C3.0:

Full CAPRAM mechanism: CAPRAM3.0i (C2.4 + C2-C5 organic chemistry)

C3.0cond:

C2.4cond + C2-C5 organic chemistry

C3.0ISSA:

C2.4ISSA + C2-C5 organic chemistry

C3.0condRED(Man):

Manually reduced version of C3.0cond

C3.0ISSARED(Man):

Manually reduced version of C3.0ISSA

C3.0ISSARED(Aut):

Automatically reduced version of C3.0

C3.0RED:

Final reduced mechanism

SPACCIM:

Spectral Aerosol Cloud Chemistry Interaction Model

MUSCAT model:

MUltiScale Chemistry Aerosol Transport Model

RTOL:

Relative integration error tolerance

ATOL:

Absolute integration error tolerance

References

  • Aumont, B., Jaecker Voirol, A., Martin, B., Toupance, G.: Tests of some reduction hypotheses made in photochemical mechanisms. Atmos. Environ. 30, 2061–2077 (1996)

    Article  Google Scholar 

  • Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S., Honoré, C., Liousse, C., Rouil, L.: Aerosol modeling with CHIMERE—prelimary evaluation at the continental scale. Atmos. Environ. 38, 2803–28217 (2004)

    Article  Google Scholar 

  • Bessagnet, B., Menut, L., Curci, G., Hodzic, A., Guillaume, B., Liousse, C., Moukhtar, S., Pun, B., Seigneur, C., Schulz, M.: Regional modeling of carbonaceous aerosols over Europe-focus on secondary organic aerosols. J. Atmos. Chem. 61, 175–202 (2008)

    Article  Google Scholar 

  • Binkowski, F.S., Roselle, S.J.: Models-3 community multiscale air quality (CMAQ) model aerosol component - 1. Model description. J. Geophys. Res.-Atmos. 108, 4183 (2003)

    Google Scholar 

  • Byun, D.W., Ching, J.K.S.: Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, (1999)

  • Carlton, A.G., Turpin, B.J., Lim, H.J., Altieri, K.E., Seitzinger, S.: Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds. Geophys. Res. Lett. 33, L06822 (2006)

  • Carlton, A.G., Turpin, B.J., Altieri, K., Seitzinger, S., Reff, A., Lim, H.-J., Ervens, B.E.: Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments. Atmos. Environ. 41, 7588–7602 (2007)

    Article  Google Scholar 

  • Carter, W.P.L.: Documentation of the SAPRCC-99 Chemical Mechanism for VOC Reactivity Assessment, (2000)

  • Chang, J.S., Brost, R.A., Isaksen, I.S.A., Madronich, S., Middleton, P., Stockwell, W.R., Walcek, C.J.: A three-dimensional eulerian acid deposition model: physical concepts and formulation. J. Geophys. Res. 92, 14681–14700 (1987)

    Article  Google Scholar 

  • Chapman, E.G., Gustafson, W.I., Easter, R.C., Barnard, J.C., Ghan, S.J., Pekour, M.S., Fast, J.D.: Coupling aerosol-cloud-radiative processes in the WRF-Chem model: investigating the radiative impact of elevated point sources. Atmos. Chem. Phys. 9, 945–964 (2009)

    Article  Google Scholar 

  • Collett Jr., J., Oberholzer, B., Staehelin, J.: Cloud chemistry at MT Rigi, Switzerland: dependence on drop size and relationship to precipitation chemistry. Atmos. Environ. 27A, 37–42 (1993)

    Google Scholar 

  • Collett Jr., J.L., Hoag, K.J., Sherman, D.E., Bator, A., Richards, L.W.: Spatial and temporal variations in San Joaquin Valley fog chemistry. Atmos. Environ. 33, 129–140 (1999)

    Article  Google Scholar 

  • Commane, R., Floquet, C., Ingham, T., Heard, D.: Aircraft FAGE measurements of OH and HO2 radicals over West Africa during the AMMA campaign, July/August 2006. European Geosciences Union 2007, Vienna, Geophysical Research Abstracts (2007)

  • Ervens, B., George, C., Williams, J.E., Buxton, G.V., Salmon, G.A., Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., Herrmann, H.: CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application. J. Geophys. Res.-Atmos. 108, 4426–4447 (2003) doi:10.1029/2002JD002202

    Google Scholar 

  • Fahey, K.M., Pandis, S.N.: Optimizing model performance: variable size resolution in cloud chemistry modeling. Atmos. Environ. 35, 4471–4478 (2001)

    Article  Google Scholar 

  • Fahey, K.M., Pandis, S.N.: Size-resolved aqueous-phase atmospheric chemistry in a three-dimensional chemical transport model. J. Geophys. Res.-Atmos. 108, D13204 (2003)

  • Fahey, K.M., Pandis, S.N., Collett, J.L., Herckes, P.: The influence of size-dependent droplet composition on pollutant processing by fogs. Atmos. Environ. 39, 4561–4574 (2005)

    Article  Google Scholar 

  • Fish, D.J.: The automatic generation of reduced mechanisms for tropospheric chemistry modelling. Atmos. Environ. 34, 1563–1574 (2000)

    Article  Google Scholar 

  • Frost, G.J., Trainer, M., Mauldin, R.L., Eisele, F.L., Prevot, A.S.H., Flocke, S.J., Madronich, S., Kok, G., Schillawski, R.D., Baumgardner, D., Bradshaw, J.: Photochemical modeling of OH levels during the first Aerosol Characterization Experiment (ACE 1). J. Geophys. Res 104, 16041–16052 (1999)

    Article  Google Scholar 

  • Gaydos, T.M., Pinder, R., Koo, B., Fahey, K.M., Yarwood, G., Pandis, S.N.: Development and application of a three-dimensional aerosol chemical transport model. PMCAMx. Atmos. Environ. 41, 2594–2611 (2007)

    Article  Google Scholar 

  • Gery, M.W., Whitten, G.Z., Killus, J.P., Dodge, M.C.: A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. Atmos. 94, 12925–12956 (1989)

    Article  Google Scholar 

  • Gong, W.M., Dastoor, A.P., Bouchet, V.S., Gong, S.L., Makar, P.A., Moran, M.D., Pabla, B., Menard, S., Crevier, L.P., Cousineau, S., Venkatesh, S.: Cloud processing of gases and aerosols in a regional air quality model (AURAMS). Atmos. Res. 82, 248–275 (2006)

    Article  Google Scholar 

  • Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., Eder, B.: Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 39, 6957–6975 (2005)

    Article  Google Scholar 

  • Han, K.M., Song, C.H., Ahn, H.J., Park, R.S., Woo, J.H., Lee, C.K., Richter, A., Burrows, J.P., Kim, J.Y., Hong, J.H.: Investigation of NOx emissions and NOx-related chemistry in East Asia using CMAQ-predicted and GOME-derived NO2 columns. Atmos. Chem. Phys. 9, 1017–1036 (2009)

    Article  Google Scholar 

  • Heard, A.C., Pilling, M.J., Tomlin, A.S.: Mechanism reduction techniques applied to tropospheric chemistry. Atmos. Environ. 32, 1059–1073 (1998)

    Article  Google Scholar 

  • Heinold, B., Helmert, J., Hellmuth, O., Wolke, R., Ansmann, A., Marticorena, B., Laurent, B., Tegen, I.: Regional modeling of Saharan dust events using LM-MUSCAT: model description and case studies. J. Geophys. Res. (D). 112, D11204 (2007). doi:10.1029/2006JD007443

    Article  Google Scholar 

  • Helmert, J., Heinold, B., Tegen, I., Hellmuth, O., Wolke, R.: Modeling of Saharan dust events within SAMUM: Implications for regional radiation balance and mesoscale circulation. Air pollution modeling and its application XVIII, 523–533 (2007)

  • Herrmann, H.: Kinetics of aqueous phase reactions relevant for atmospheric chemistry. Chem. Rev. 103, 4691–4716 (2003)

    Article  Google Scholar 

  • Herrmann, H., Ervens, B., Jacobi, H.-W., Wolke, R., Nowacki P., Zellner, R.: CAPRAM 2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry. J. Atm. Chem. 36, 231–284 (2000)

    Google Scholar 

  • Herrmann, H., Tilgner, A., Barzaghi, P., Majdik, Z., Gligorovski, S., Poulain, L., Monod, A.: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0. Atmos. Environ. 39, 4351–4363 (2005)

    Article  Google Scholar 

  • Hindmarsh, A.A.: Scientific Computing. ODEPACK: A Systematized Collection of ODE Solvers. North-Holland, 55–74 (1983)

  • Hinneburg, D., Renner, E., Wolke, R.: Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony. Environ. Sci. Technol. 16, 25–35 (2009). doi:10.1007/s11356-008-0081-5

    Google Scholar 

  • Hoag, K.J., Collet Jr., J.L., Pandis, S.N.: The influence of drop-size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs. Atmos. Environ. 33, 4817–4832 (1999)

    Article  Google Scholar 

  • Lelieveld, J., Heintzenberg, J.: Sulfate cooling effect on climate through in-cloud oxidation of anthropogenic S02. Science 258, 117–120 (1992)

    Article  Google Scholar 

  • Leriche, M., Deguillaume, L., Chaumerliac, N.: Modeling study of strong acids formation and partitioning in a polluted cloud during wintertime. J. Geophys. Res.-Atmos. 108, 4433–4444 (2003)

    Google Scholar 

  • Leriche, M., Curier, R.L., Deguillaume, L., Caro, D., Sellegri, K., Chaumerliac, N.: Numerical quantification of sources and phase partitioning of chemical species in cloud: application to wintertime anthropogenic air masses at the Puy de Dome station. J. Atmos. Chem. 57, 281–297 (2007)

    Article  Google Scholar 

  • Liu, X.H., Mauersberger, G., Moller, D.: The effects of cloud processes on the tropospheric photochemistry: an improvement of the EURAD model with a coupled gaseous and aqueous chemical mechanism. Atmos. Environ. 31, 3119–3135 (1997)

    Article  Google Scholar 

  • Lurmann, F.W., Lloyd, A.C., Atkinson, R.: A chemical mechanism for use in long-range transport/acid deposition computer modeling. J. Geophys. Res. 91, 10905–10936 (1986)

    Article  Google Scholar 

  • Makar, P.A., Bouchet, V.S., Nenes, A.: Inorganic chemistry calculations using HETV—a vectorized solver for the SO42–NO3–NH4+ sytem based on ISORROPIA algorithms. Atmos. Environ. 37, 2279–2294 (2003)

    Article  Google Scholar 

  • Mauersberger, G.: ISSA (iterative screening and structure analysis)—a new reduction method and its application to the tropospheric cloud chemical mechanism RACM/CAPRAM2.4. Atmos. Environ. 39, 4341–4350 (2005)

    Article  Google Scholar 

  • Mauldin, R.L., Madronich, S., Flocke, S.J., Eisele, F.L., Frost, G.J., Prevot, A.S.H.: New insights on OH: measurements around and in clouds. Geophys. Res. Lett. 24, 3033–3036 (1997)

    Article  Google Scholar 

  • Monod, A., Carlier, P.: Impact of clouds on the tropospheric ozone budget: direct effect of multiphase photochemistry of soluble organic compounds. Atmos. Environ. 33, 4431–4446 (1999)

    Article  Google Scholar 

  • Monod, A., Poulain, L., Grubert, S., Voisin, D., Wortham, H.: Kinetics of OH-initiated oxidation of oxygenated organic compounds in the aqueous phase: new rate constants, structure-activity relationships and atmospheric implications. Atmos. Environ. 39, 7667–7688 (2005)

    Article  Google Scholar 

  • Moore, K.F., Eli Sherman, D., Reilly, F.E., Collett Jr., J.L.: Drop size-dependent chemical composition in clouds and fogs. Part I. Observations. Atmos. Environ. 38, 1389–1402 (2004)

    Article  Google Scholar 

  • Nenes, A., Pandis, S.N., Pilinis, C.: ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 4, 123–152 (1998)

    Article  Google Scholar 

  • Neophytou, M.K., Goussis, D.A., van Loon, M., Mastorakos, E.: Reduced chemical mechanisms for atmospheric pollution using computational singular perturbation analysis. Atmos. Environ. 38, 3661–3673 (2004)

    Article  Google Scholar 

  • Radhakrishnan, K., Hindmarsh, A.C.: Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations. LLNL report UCRL-ID-113855 (1993)

  • Raja, S., Raghunathan, R., Yu, X.-Y., Lee, T., Chen, J., Kommalapati, R.R., Murugesan, K., Shen, X., Qingzhong, Y., Valsaraj, K.T., Collett Jr., J.L.: Fog chemistry in the Texas—Louisiana gulf coast corridor. Atmos. Environ. 42, 2048–2061 (2008)

    Article  Google Scholar 

  • Ramanathan, V., Crutzen, P.J., Kiehl, J.T., Rosenfeld, D.: Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001)

    Article  Google Scholar 

  • Rattigan, O.V., Reilly, J., Judd, C., Moore, K.F., Das, M., Sherman, D.E., Dutkiewicz, V.A., Collett, J.C., Husain, L.: SO2 oxidation in clouds at Whiteface Mountain as a function of drop size. J. Geophys. Res. 106, 17347–17358 (2001)

    Article  Google Scholar 

  • Ravishankara, A.R.: Heterogeneous and multiphase chemistry in the troposphere. Science 276, 1058–1065 (1997)

    Article  Google Scholar 

  • Sandu, A., Sander, R.: Technical note: simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. Atmos. Chem. Phys. 6, 187–195 (2006)

    Article  Google Scholar 

  • Schaap, M., Sauter, F., Timmermans, R., Roemer, M., Velders, G., Beck, J., Builtjes, P.: The LOTOS-EUROS model: description, validation and latest developments. Int. J. Environ. Pollut. 32, 270–290 (2008)

    Article  Google Scholar 

  • Schättler, U., Doms, G., Schraff, C.: A Description of the Nonhydrostatic Regional COSMO-Model Part VII: User’s Guide (2008)

  • Schell, B., Ackermann, I.J., Hass, H., Binkowski, F.S., Ebel, A.: Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. Atmos. 106, 28275–28293 (2001)

    Article  Google Scholar 

  • Sehili, A.M., Wolke, R., Knoth, O., Simmel, M., Tilgner, A., Herrmann, H.: Comparison of different model approaches for the simulation of multiphase processes. Atmos. Environ. 39, 4403–4417 (2005)

    Article  Google Scholar 

  • Simpson, D., Fagerli, H., Jonson, J.E., Tsyro, S., Wind, P., Tuovinen, J.-P.: Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe, Part I, EMEP Status Report 2003, ISSN 0806-4520, (2003)

  • Smyth, S.C., Jiang, W.M., Roth, H., Moran, M.D., Makar, P.A., Yang, F.Q., Bouchet, V.S., Landry, H.: A comparative performance evaluation of the AURAMS and CMAQ air-quality modelling systems. Atmos. Environ. 43, 1059–1070 (2009)

    Article  Google Scholar 

  • Sportisse, B., Djouad, R.: Reduction of chemical kinetics in air pollution modeling. J. Comput. Phys. 164, 354–376 (2000)

    Article  Google Scholar 

  • Steppeler, J., Doms, G., Schattler, U., Bitzer, H.W., Gassmann, A., Damrath, U., Gregoric, G.: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol. Atmos. Phys. 82, 75–96 (2003)

    Article  Google Scholar 

  • Stern, R., Yamartino, R., Graff, A.: Analizing the response of a chemical transport model to emissions reductions utilizing various grid resolutions. Twenty-eight ITM on Air Pollution Modeling and its Application, Leipzig (2006)

  • Stockwell, W.R., Middleton, P., Chang, J.S., Tang, X.Y.: The 2nd generation regional acid deposition model chemical mechanism for regional air-quality modeling. J. Geophys. Res. Atmos. 95, 16343–16367 (1990)

    Article  Google Scholar 

  • Stockwell, W.R., Kirchner, F., Kuhn, M., Seefeld, S.: A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. Atmos. 102, 25847–25879 (1997)

    Article  Google Scholar 

  • Sun, J., Ariya, P.A.: Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review. Atmos. Environ. 40, 795–820 (2006)

    Article  Google Scholar 

  • Tilgner, A., Herrmann, H.: Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM. Atmos. Environ. (2010). doi:10.1016/j.atmosenv.2010.07.050

  • Tilgner, A., Majdik, Z., Sehili, A.M., Simmel, M., Wolke, R., Herrmann, H.: SPACCIM: simulations of the multiphase chemistry occurring in the FEBUKO hill cap cloud experiments. Atmos. Environ. 39, 4389–4401 (2005)

    Article  Google Scholar 

  • Turanyi, T.: Reduction of large reaction-mechanisms. New J. Chem. 14, 795–803 (1990)

    Google Scholar 

  • Venkatram, A., Karamchandani, P.K., Misra, P.K.: Testing a comprehensive acid deposition model. Atmos. Environ. 22, 737–747 (1988)

    Article  Google Scholar 

  • von Sonntag, C., Dowideit, P., Fang, X.W., Mertens, R., Pan, X.M., Schuchmann, M.N., Schuchmann, H.P.: The fate of peroxyl radicals in aqueous solution. Water Sci. Technol. 35, 9–15 (1997)

    Google Scholar 

  • Warneck, P.: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds. Phys. Chem. Chem. Phys. 1, 5471–5483 (1999)

    Article  Google Scholar 

  • Whitehouse, L.E., Tomlin, A.S., Pilling, M.J.: Systematic reduction of complex tropospheric chemical mechanisms. Part I: sensitivity and time-scale analyses. Atmos. Chem. Phys. 4, 2025–2056 (2004)

    Article  Google Scholar 

  • Wolke, R., Knoth, O.: Time-integration of multiphase chemistry in size-resolved cloud models. Appl. Numer. Math. 42, 473–487 (2002)

    Article  Google Scholar 

  • Wolke, R., Knoth, O., Hellmuth, O., Schröder, W., Renner, E.: The parallel model system LM-MUSCAT for chemistry-transport simulations: Coupling scheme, parallelization and application. Parallel computing: Software technology, algorithms, architectures and applications, 363–370 (2004a)

  • Wolke, R., Hellmuth, O., Knoth, O., Schröder, W., Heinrich, B., Renner, E.: The chemistry-transport modeling system LM-MUSCAT: Description and Citydelta applications. 26th NATO/CCMS International Technical Meeting on Air Pollution Modelling and its Applications, 427–439 (2004b)

  • Wolke, R., Sehili, A.M., Simmel, M., Knoth, O., Tilgner, A., Herrmann, H.: SPACCIM: a parcel model with detailed microphysics and complex multiphase chemistry. Atmos. Environ. 39, 4375–4388 (2005)

    Article  Google Scholar 

  • Zaveri, R.A., Peters, L.K.: A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. Atmos. 104, 30387–30415 (1999)

    Article  Google Scholar 

  • Zaveri, R.A., Easter, R.C., Fast, J.D., Peters, L.K.: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J. Geophys. Res.-Atmos. 113, D13204 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Herrmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1280 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deguillaume, L., Tilgner, A., Schrödner, R. et al. Towards an operational aqueous phase chemistry mechanism for regional chemistry-transport models: CAPRAM-RED and its application to the COSMO-MUSCAT model. J Atmos Chem 64, 1–35 (2009). https://doi.org/10.1007/s10874-010-9168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-010-9168-8

Keywords

Navigation