Skip to main content
Log in

Growth mechanism of one-dimensional zinc sulfide nanostructures through electrophoretic deposition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we show experimental evidence about the growth mechanism of one-dimensional ZnS nanostructures through electrophoretic deposition. ZnS nanoparticles with 20 nm of mean diameter were prepared by microwave-assisted synthesis using sodium citrate as the stabilizer. The resulting aqueous dispersion was deposited without any further preparation by means of electrophoretic methods using aluminum plates as electrodes under 600 mV in order to avoid bubble formation. FE-SEM images of different deposition times confirm the previously proposed mechanism of lyosphere distortion and thinning and the subsequent dipole–dipole interactions’ phenomena where the incoming particles are oriented by the particles previously deposited. In this mechanism, the first particle/lyosphere deposited acts as a dipole and attract the incoming particles to it, creating a one-dimensional nanostructure after some time of deposition. These results can help understand the different mechanisms of the electrophoretic deposition and are useful for future nanostructure designs of semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EPD:

Electrophoretic deposition

FE-SEM:

Field emission scanning electron microscopy

MW:

Microwave

TEM:

Transmission electron microscopy

HRTEM:

High resolution transmission electron microscopy

References

  1. Yang PD, Yan RX, Fardy M (2010) Nano Lett 10:1529. doi:10.1021/nl100665r

    Article  CAS  Google Scholar 

  2. Zhang XT, Liu Z, Li Q, Hark SK (2005) J Phys Chem B 109:17913. doi:10.1021/jp0527406

    Article  CAS  Google Scholar 

  3. Height MJ, Madler L, Pratsinis SE, Krumeich F (2006) Chem Mater 18:572. doi:10.1021/cm052163y

    Article  CAS  Google Scholar 

  4. Fortuna SA, Li XL (2010) Semicond Sci Technol 25(2):024005. doi:10.1088/0268-1242/25/2/024005

    Article  Google Scholar 

  5. Ho ST, Chen KC, Chen HA, Lin HY, Cheng CY, Lin HN (2007) Chem Mater 19:4083. doi:10.1021/cm070474y

    Article  CAS  Google Scholar 

  6. Jie JS, Zhang WJ, Bello I, Lee CS, Lee ST (2010) Nano Today 5:313. doi:10.1016/j.nantod.2010.06.009

    Article  CAS  Google Scholar 

  7. Shen GZ, Bando Y, Golberg D, Zhou CW (2008) J Phys Chem C 112:12299. doi:10.1021/jp8039687

    Article  CAS  Google Scholar 

  8. Barrelet CJ, Wu Y, Bell DC, Lieber CM (2003) J Am Chem Soc 125:11498. doi:10.1021/ja036990g

    Article  CAS  Google Scholar 

  9. Boccaccini AR, Roether JA, Thomas BJC, Shaffer MSP, Chavez E, Stoll E, Minay EJ (2006) J Ceram Soc Jpn 114:1. doi:10.2109/jcersj.114.1

    Article  CAS  Google Scholar 

  10. Mohammadi MR, Ordikhani F, Fray DJ, Khomamizadeh F (2011) Particuology 9:161. doi:10.1016/j.partic.2010.07.026

    Article  CAS  Google Scholar 

  11. Wang HW, Ting CF, Hung MK, Chiou CH, Liu YL, Liu ZW, Ratinac KR, Ringer SP (2009) Nanotechnology 20(5):055601. doi:10.1088/0957-4484/20/5/055601

    Article  Google Scholar 

  12. Cao GZ (2004) J Phys Chem B 108:19921. doi:10.1021/jp040492s

    Article  CAS  Google Scholar 

  13. Vázquez A, López I, Gómez I (2011) Mater Lett 65:2422. doi:10.1016/j.matlet.2011.04.107

    Article  Google Scholar 

  14. Trindade T, O’Brien P, Pickett NL (2001) Chem Mater 13:3843. doi:10.1021/cm000843p

    Article  CAS  Google Scholar 

  15. Tiemann M, Marlow F, Brieler F, Linden M (2006) J Phys Chem B 110:23142. doi:10.1021/jp0638383

    Article  CAS  Google Scholar 

  16. Yu JH, Joo J, Park HM, Baik SI, Kim YW, Kim SC, Hyeon T (2005) J Am Chem Soc 127:5662. doi:10.1021/ja044593f

    Article  CAS  Google Scholar 

  17. Sarkar P, Nicholson PS (1996) J Am Ceram Soc 79:1987. doi:10.1111/j.1151-2916.1996.tb08929.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idalia Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez, A., López, I.A. & Gómez, I. Growth mechanism of one-dimensional zinc sulfide nanostructures through electrophoretic deposition. J Mater Sci 48, 2701–2704 (2013). https://doi.org/10.1007/s10853-012-7066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7066-y

Keywords

Navigation