Skip to main content
Log in

Development and characterization of microsatellite markers in two agarophyte species, Gracilaria birdiae and Gracilaria caudata (Gracilariaceae, Rhodophyta), using next-generation sequencing

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The two red algal species, Gracilaria birdiae Plastino and E.C. Oliveira and Gracilaria caudata J. Agardh, are the most important natural sources of agar in Brazil. Using the 454 sequencing system, we identified 464 and 487 perfect microsatellite loci in 6908 and 9602 sequences/contigs from G. birdiae and G. caudata, respectively. After a conservative removal of potentially problematic loci, 144 loci were tested (72 from each species). A total of 25 polymorphic microsatellite loci were defined (13 loci for G. birdiae and 17 loci for G. caudata, including 5 loci common to both species). The five microsatellite loci that cross-amplified in both species showed species-specific differences in allele size. Polymorphic microsatellite loci were used to assess the genetic diversity of both species in their main harvest and cultivation areas on the Brazilian coast. Gene diversity was similar in G. birdiae and G. caudata. However, significant heterozygote deficiency was observed in G. birdiae, whereas heterozygote excess occurred in G. caudata, suggesting that these two related species differ in their mating system. These results also raised new questions on their biology in the field and on their patterns of genetic structure across their geographical ranges. In addition, the 20 loci developed in this study proved successful in identifying each individual in the field as a unique multilocus genotype, and will be useful for studying lineage sorting, breeding programs, or conservation issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abajian C (1994) SPUTNIK: http://abajian.net/sputnik/

  • Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1:101–102

    Article  CAS  Google Scholar 

  • Andreakis N, Kooistra WHCF, Procaccini G (2007) Microsatellite markers in an invasive strain of Asparagopsis taxiformis (Bonnemaisoniales, Rhodophyta): insights in ploidy level and sexual reproduction. Gene 406:144–151

    Article  CAS  PubMed  Google Scholar 

  • Araujo GC, Rodrigues JAG (2011) Maricultura da alga marinha vermelha Gracilaria birdiae em Icapuí, Ceará. Arq Ciênc Mar 44:62–68

    Google Scholar 

  • Arnaud-Haond S, Belkhir K (2007) GENECLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15–17

    Article  CAS  Google Scholar 

  • Avise J (2004) Molecular markers, natural history and evolution. Chapman & Hall, New York-London

    Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Genome, Populations, Interactions, CNRS sUMR 5000, Université de Montpellier II, Montpellier, France. URL:http://www.genetix.univmontp2.fr/genetix/intro.htm

  • Brown AHD, Feldman MW, Nevo E (1980) Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96:523–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burt A, Carter DA, Koenig GL, White TJ, Taylor JW (1996) Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proc Natl Acad Sci U S A 93:770–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Câmara-Neto C (1987) Seaweed culture in Rio Grande do Norte, Brazil. Hydrobiologia 151(152):363–367

    Article  Google Scholar 

  • Costa RF, Salles MCT, Matias LGO (2011) Cultivating algae marines and values for the development of a coastal community in the city of Icapuí/CE. Cad Agroecol 6:1–5

    Google Scholar 

  • Couceiro L, Maneiro I, Mauger S, Valero M, Ruiz JM, Barreiro R (2011) Microsatellite development in Rhodophyta using high-throughput sequence data. J Phycol 47:1258–1265

    Article  PubMed  Google Scholar 

  • Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350

    Article  Google Scholar 

  • Engel CR, Wattier R, Destombe C, Valero M (1999) Performance of non–motile male gametes in the sea: analysis of paternity and fertilization success in a natural population of a red seaweed, Gracilaria gracilis. Proc R Soc Lond B 266:1879–1886

    Article  Google Scholar 

  • Engel CR, Destombe C, Valero M (2004) Mating system and gene flow in the red seaweed Gracilaria gracilis: effect of haploid–diploid life history and intertidal rocky shore landscape on finescale genetic structure. Heredity 92:289–298

    Article  CAS  PubMed  Google Scholar 

  • Guillemin ML, Destombe C, Faugeron S, Correa JA, Valero, M (2005) Development of microsatellites DNA markers in the cultivated seaweed, Gracilaria chilensis (Gracilariales, Rhodophyta). Mol Ecol Notes 5:155–157

  • Guillemin ML, Faugeron S, Destombe C, Viard F, Correa JA, Valero M (2008) Genetic variation in wild and cultivated populations of the haploid-diploid red alga Gracilaria chilensis: how farming practices favor asexual reproduction and heterozygosity. Evolution 62:1500–1519

    Article  PubMed  Google Scholar 

  • Guillemin ML, Valero M, Faugeron S, Nelson W, Destombe C (2014) Tracing the trans-Pacific evolutionary history of a domesticated seaweed (Gracilaria chilensis) with archaeological and genetic data. PLoS One 9(12), e114039

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi L, Bulboa C, Kradolfer P, Soriano G, Robledo D (2014) Cultivation of red seaweeds: a Latin American perspective. J Appl Phycol 26:719–727

    Article  Google Scholar 

  • Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. TREE 11:424–429

    CAS  PubMed  Google Scholar 

  • Kain JM, Destombe C (1995) A review of the life history, reproduction and phenology of Gracilaria. J Appl Phycol 7:269–281

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Kostamo K, Korpelainen H, Olsson S (2012) Comparative study on the population genetics of the red algae Furcellaria lumbricalis occupying different salinity conditions. Mar Biol 159:561–571

    Article  Google Scholar 

  • Krueger-Hadfield SA, Roze D, Correa JA, Destombe C, Valero M (2015) O father where art thou? Paternity analyses in a natural population of the haploid–diploid seaweed Chondrus crispus. Heredity 114:185–194

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Morchen M, Engel CR, Destombe C, Epplen JT, Epplen C, Saumitou-Laprade P, Valero M (1999) Characterization of microsatellite markers in the red alga Gracilaria gracilis. Mol Ecol 8:700–702

    Article  CAS  PubMed  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Goodwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in open microfabricated high density picoliter reactors. Nature 437:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • Mauger S, Couceiro L, Valero M (2012) A simple and cost-effective method to synthesize an internal size standard amenable to use with a 5-dye system. Prime Res Biotechnol 2:40–46

    Google Scholar 

  • Minitab Inc. (2009) Minitab statistical software, version 16 for Windows. State College, Pennsylvania

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira EC (1984) The cultivation of seaweeds for the production of agar and agaroids in Brazil–actual state and future perspectives. Mems Assoc Latinoam Acuic 5:431–435

    Google Scholar 

  • Pardo C, Peña V, Bárbara I, Valero M, Barreiro R (2014) Development and multiplexing of the first microsatellite markers in a coralline red alga (Phymatolithon calcareum, Rhodophyta). Phycologia 53:474–479

    Article  CAS  Google Scholar 

  • Pemberton JM (2009) Wild pedigrees: the way forward. Proc R Soc Lond B Biol 275:613–621

    Article  Google Scholar 

  • Plastino EM, Oliveira EC (2002) Gracilaria birdiae (Gracilariales, Rhodophyta), a new species from the tropical South American Atlantic with terere frond and deep spermatangial conceptacles. Phycologia 41:389–396

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  PubMed Central  Google Scholar 

  • Schoebel CN, Brodbeck S, Buehler D, Cornejo C, Gajurel J, Hartikainen H, Keller D, Leys M, Ricanova S, Segelbacher G, Werth S, Csencsics D (2013) Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing. J Evol Biol 26:600–611

    Article  CAS  PubMed  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Song SL, Lim PE, Phang SM, Lee WW, Lewmanomont K, Largo DB, Han NA (2013) Microsatellite markers from expressed sequence tags (ESTs) of seaweeds in differentiating various Gracilaria species. J Appl Phycol 25:839–846

    Article  CAS  Google Scholar 

  • Squirrell J, Hollingsworth PM, Woodhead M, Russell J, Lowe AJ, Gibby M, Powell W (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol 12:1339–1348

    Article  CAS  PubMed  Google Scholar 

  • Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203

    Article  CAS  PubMed  Google Scholar 

  • Tautz D, Schlötterer C (1994) Simple sequences. Curr Opin Genet Dev 4:832–837

    Article  CAS  PubMed  Google Scholar 

  • Untergrasser A, Cutcutache I, Koressaar TYJ, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res. doi:10.1093/nar/gks596

    Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wang J, Peng C, Liu Z, Tang Z, Yang G (2013) Isolation and characterization of microsatellites of Grateloupia filicina. Conserv Genet Resour 5:763–766

    Article  Google Scholar 

  • Wattier R, Dallas JF, Destombe C, Saumitou-Laprade P, Valero M (1997) Single locus microsatellites in Gracilariales (Rhodophyta): high level of genetic variability within Gracilaria gracilis and conservation in related species. J Phycol 33:868–880

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the São Paulo Research Foundation (FAPESP: 2010/50175-3; 2011/10189-8), the Brazilian National Council for Scientific and Technological Development (CNPq: 300148/93-3; 301491/2013-5), the program of international cooperation USP/COFECUB between the University of São Paulo and the Comité Français d’Evaluation de la Coopération Universitaire avec le Brésil, and the International Research Network “Diversity, Evolution and Biotechnology of Marine Algae” (GDRI CNRS 0803). We are also most grateful to the Biogenouest Genomics core facility for its technical support and to Carolyn Engel-Gautier for the English review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Destombe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayres-Ostrock, L.M., Mauger, S., Plastino, E.M. et al. Development and characterization of microsatellite markers in two agarophyte species, Gracilaria birdiae and Gracilaria caudata (Gracilariaceae, Rhodophyta), using next-generation sequencing. J Appl Phycol 28, 653–662 (2016). https://doi.org/10.1007/s10811-015-0592-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0592-7

Keywords

Navigation