Skip to main content

Advertisement

Log in

Leaf breakdown, detrital resources, and food webs in streams affected by mine drainage

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Breakdown of leaf litter is essential for providing detrital resources for food webs but can be impaired by anthropogenic activities, which may disrupt energy flow to consumers. We investigated the relationship between leaf breakdown and food web structure in 12 streams with or without mining impacts on South Island, New Zealand. Six streams received inputs of acid mine drainage (pH 2.5–4.9), three were naturally acidic (pH ~5.0), and three were circumneutral (pH ~6.8). Streams affected by mining either had highly acidic water (pH <3) or iron precipitates present on substrata. Breakdown rates of leaves were significantly lower in mining-affected streams than circumneutral (by almost 50%) but not naturally acidic streams and were driven primarily by microbial activity, as shredding invertebrates were often absent. Mining-affected stream webs were simplified structures with fewer species and links than those in other streams. With few species to process leaf litter and transfer detrital resources, inputs of AMD disrupted both the mechanisms responsible for breakdown and links for energy flow. While faster breakdown rates were associated with larger food webs, limited function maintained in mining-affected streams was sufficient to support primary consumers and small food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barnden, A. R. & J. S. Harding, 2005. Shredders and leaf breakdown in streams polluted by coal mining in the South Island, New Zealand. New Zealand Natural Sciences 30: 35–48.

    Google Scholar 

  • Carlisle, D. M. & W. H. Clements, 2005. Leaf litter breakdown, microbial respiration, and shredder production in metal polluted streams. Freshwater Biology 50: 380–390.

    Article  CAS  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Cohen, J. E., 1977. Ration of prey to predators in community food webs. Nature 270: 165–167.

    Article  Google Scholar 

  • Collier, K. J. & M. J. Winterbourn, 1987. Breakdown of kamahi leaves in four south Westland streams. Mauri Ora 14: 33–42.

    Google Scholar 

  • Collier, K. J., O. J. Ball, A. K. Graesser, M. R. Main & M. J. Winterbourn, 1990. Do organic and anthropogenic acidity have similar effects on aquatic fauna? Oikos 59: 33–38.

    Article  Google Scholar 

  • Collier, K. J., W. L. Chadderton & M. J. Winterbourn, 2006. Breakdown and invertebrate colonisation of kamahi leaves in southern New Zealand streams. New Zealand Natural Sciences 31: 137–149.

    Google Scholar 

  • Duffy, J. E., B. J. Cardinale, K. E. France, P. B. McIntyre, E. Thébault & M. Loreau, 2007. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters 10: 522–538.

    Article  PubMed  Google Scholar 

  • Gessner, M. O. & E. Chauvet, 2002. A case for using litter breakdown to assess functional stream integrity. Ecological Applications 12: 498–510.

    Article  Google Scholar 

  • Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.

    Article  Google Scholar 

  • Gessner, M. O., C. M. Swan, C. K. Dang, B. G. McKie, R. D. Bardgett, D. H. Wall & S. Hättenschwiler, 2010. Diversity meets decomposition. Trends in Ecology and Evolution 25: 372–380.

    Article  PubMed  Google Scholar 

  • Gray, N. F., 1997. Environmental impact and remediation of acid mine drainage streams: a management problem. Environmental Geology 30: 62–71.

    Article  CAS  Google Scholar 

  • Gray, L. J. & J. V. Ward, 1983. Leaf litter breakdown in streams receiving treated and untreated metal mine drainage. Environmental International 9: 135–138.

    Article  CAS  Google Scholar 

  • Groom, A. & A. G. Hildrew, 1989. Food quality for detritivores in streams of contrasting pH. Journal of Animal Ecology 58: 863–881.

    Article  Google Scholar 

  • Harding, J. S., M. J. Winterbourn & W. F. McDiffett, 1997. Stream faunas and ecoregions in South Island, New Zealand: do they correspond? Archiv für Hydrobiologie 140: 289–307.

    Google Scholar 

  • Hicks, B. J. & J. L. Laboyrie, 1999. Preliminary estimates of mass-loss rates, changes in stable isotope composition, and invertebrate colonisation of evergreen and deciduous leaves in a Waikato, New Zealand, stream. New Zealand Journal of Marine and Freshwater Research 33: 221–232.

    Article  Google Scholar 

  • Hildrew, A. G., 2009. Sustained research on stream communities: a model system and the comparative approach. Advances in Ecological Research 41: 175–311.

    Article  Google Scholar 

  • Hladyz, S., K. Åbjörnsson, E. Chauvet, M. Dobson, A. Elosegi, V. Ferreira, T. Fleituch, M. O. Gessner, P. S. Giller, V. Gulis, S. A. Hutton, J. O. Lacoursière, S. Lamothe, A. Lecerf, B. Malmqvist, B. G. McKie, M. Nistorescu, E. Preda, M. P. Riipinen, G. Rîşnoveanu, M. Schindler, S. D. Tiegs, L. B.-M. Vought & G. Woodward, 2011. Stream ecosystem functioning in an agricultural landscape: the importance of terrestrial-aquatic linkages. Advances in Ecological Research 44: 211–276.

    Article  Google Scholar 

  • Hogsden, K. L. & J. S. Harding, 2012a. Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshwater Science 31: 108–120.

    Article  Google Scholar 

  • Hogsden, K. L. & J. S. Harding, 2012b. Anthropogenic and natural sources of acidity and metals and their influence on the structure of stream food webs. Environmental Pollution 162: 466–474.

    Article  PubMed  CAS  Google Scholar 

  • Hooper, D. U., F. S. Chapin III, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setälä, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Article  Google Scholar 

  • Kitto, J., 2009. The application of ecological theory to the remediation of macroinvertebrate communities impacted by acid mine drainage. MSc. Thesis, University of Canterbury, Christchurch, New Zealand: 151 pp.

  • Layer, K., A. G. Hildrew, G. B. Jenkins, J. O. Riede, S. J. Rossiter, C. R. Townsend & G. Woodward, 2010. Long-term dynamics of a well-characterised food web: four decades of acidification and recovery in the Broadstone Stream model system. Advances in Ecological Research 44: 69–117.

    Article  Google Scholar 

  • Ledger, M. E. & A. G. Hildrew, 2005. The ecology of acidification and recovery: changes in herbivore-algal food web linkages across a stream pH gradient. Environmental Pollution 137: 103–118.

    Article  PubMed  CAS  Google Scholar 

  • Linklater, W., 1995. Breakdown and detritivore colonization of leaves in 3 New Zealand streams. Hydrobiologia 306: 241–250.

    Article  Google Scholar 

  • Maltby, L., D. M. Forrow, A. B. A. Boxall, P. Calow & C. I. Betton, 1995. The effect of motorway runoff on freshwater ecosystems: 1. Field study. Environmental Toxicology and Chemistry 14: 1079–1092.

    Article  CAS  Google Scholar 

  • Mantel, S. K., M. Salas & D. Dudgeon, 2004. Foodweb structure in a tropical Asian forest stream. Journal of the North American Benthological Society 23: 728–755.

    Article  Google Scholar 

  • McKie, B. G., M. Schindler, M. O. Gessner & B. Malmqvist, 2009. Placing biodiversity and ecosystem functioning in context: environmental perturbations and the effects of species richness in a stream field experiment. Oecologia 160: 757–770.

    Article  PubMed  Google Scholar 

  • Niyogi, D. K., W. M. Lewis Jr. & D. M. McKnight, 2001. Litter breakdown in mountain streams affected by mine drainage: biotic mediation of abiotic controls. Ecological Applications 11: 506–516.

    Article  Google Scholar 

  • Niyogi, D. K., W. M. Lewis Jr. & D. M. McKnight, 2003. Direct and indirect effects of mine drainage on bacterial processes in mountain streams. Journal of the North American Benthological Society 22: 276–291.

    Article  Google Scholar 

  • Niyogi, D. K., J. S. Harding & K. S. Simon, 2013. Organic matter breakdown as a measure of stream health in New Zealand streams affected by acid mine drainage. Ecological Indicators 24: 510–517.

    Article  CAS  Google Scholar 

  • Petrin, Z., G. Englund & B. Malmqvist, 2008. Contrasting effects of anthropogenic and natural acidity in streams: a meta-analysis. Proceedings of the Royal Society B 275: 1143–1148.

    Article  PubMed  Google Scholar 

  • Pfankuch, D. J., 1975. Stream Reach Inventory and Channel Stability Evaluation. USDA Forest Service Northern Region, Montana.

    Google Scholar 

  • Rawcliffe, R., C. D. Sayer, G. Woodward, J. Grey, T. A. Davidson & J. I. Jones, 2010. Back to the future: using palaeolimnology to infer long-term changes in shallow lake food webs. Freshwater Biology 55: 600–613.

    Article  Google Scholar 

  • Schlief, J. & M. Mutz, 2005. Long-term leaf litter decomposition and associated microbial processes in extremely acidic (pH < 3) mining waters. Archiv für Hydrobiologie 164: 53–68.

    Article  CAS  Google Scholar 

  • Schlief, J. & M. Mutz, 2006. Palatability of leaves conditioned in streams affected by mine drainage: a feeding experiment with Gammarus pulex (L.). Hydrobiologia 563: 445–452.

    Article  CAS  Google Scholar 

  • Schultheis, A. S., M. Sanchez & A. C. Hendricks, 1997. Structural and functional responses of stream insects to copper pollution. Hydrobiologia 346: 85–93.

    Article  CAS  Google Scholar 

  • Sherwood, G. D., J. Kovecses, A. Hontela & J. B. Rasmussen, 2002. Simplified food webs lead to energetic bottlenecks in polluted lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1–5.

    Article  Google Scholar 

  • Sierfert, J. & M. Mutz, 2001. Processing of leaf litter in acid waters of post-mining landscape in Lusatia, Germany. Ecological Engineering 17: 297–306.

    Article  Google Scholar 

  • Simon, K. S., M. A. Simon & E. F. Benfield, 2009. Variation in ecosystem function in Appalachian streams along an acidity gradient. Ecological Applications 19: 1147–1160.

    Article  PubMed  CAS  Google Scholar 

  • Tank, J. L. & M. J. Winterbourn, 1995. Biofilm development and invertebrate colonization of wood in four New Zealand streams of contrasting pH. Freshwater Biology 34: 303–315.

    Article  Google Scholar 

  • Thébault, E. & M. Loreau, 2003. Food-web constraints on biodiversity-ecosystem functioning relationships. Proceedings of the National Academy of Science 100: 14949–14954.

    Article  Google Scholar 

  • Thompson, R. M. & C. R. Townsend, 2000. New Zealand’s stream invertebrate communities: an international perspective. In Collier, K. J. & M. J. Winterbourn (eds), New Zealand Stream Invertebrates: Ecology and Implications for Management. New Zealand Limnological Society, Christchurch.

    Google Scholar 

  • Thompson, R. M. & C. R. Townsend, 2005. Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. Oikos 108: 137–148.

    Article  Google Scholar 

  • Winterbourn, M. J., K. L. D. Gregson & C. H. Dolphin, 2000. Guide to Aquatic Insects of New Zealand, 3rd edn. Bulletin of the Entomological Society of New Zealand 13.

  • Woodcock, T. S. & A. D. Huryn, 2005. Leaf litter processing and invertebrate assemblages along a pollution gradient in a Maine (USA) headwater stream. Environmental Pollution 134: 363–375.

    Article  PubMed  CAS  Google Scholar 

  • Woodcock, T. S. & A. D. Huryn, 2007. The response of macroinvertebrate production to a pollution gradient in a headwater stream. Freshwater Biology 52: 177–196.

    Article  CAS  Google Scholar 

  • Woodward, G., 2009. Biodiversity, ecosystem functioning and food webs in fresh waters: assembling the jigsaw puzzle. Freshwater Biology 54: 2171–2187.

    Article  Google Scholar 

  • Woodward, G., D. C. Speirs & A. G. Hildrew, 2005. Quantification and resolution of a complex, size-structured food web. Advances in Ecological Research 36: 85–135.

    Article  Google Scholar 

  • Young, R. G. & K. J. Collier, 2009. Contrasting responses to catchment modification among a range of functional and structural indicators of river ecosystem health. Freshwater Biology 54: 2155–2170.

    Article  CAS  Google Scholar 

  • Young, R. G., C. D. Matthaei & C. R. Townsend, 2008. Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. Journal of the North American Benthological Society 27: 605–625.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ian Reeves and Phil Jellyman for field assistance; Milen Marinov, Haley Stoddart, and Linda Morris for help in the laboratory; and Mike Winterbourn and two anonymous reviewers for useful comments that improved this manuscript. The Brian Mason Scientific & Technical Trust and the Foundation for Science Research & Technology (Grant CRLX0401) funded this research. K. Hogsden was supported by scholarships from the Natural Sciences and Engineering Research Council of Canada and the University of Canterbury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristy L. Hogsden.

Additional information

Handling editor: B. Oertli

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogsden, K.L., Harding, J.S. Leaf breakdown, detrital resources, and food webs in streams affected by mine drainage. Hydrobiologia 716, 59–73 (2013). https://doi.org/10.1007/s10750-013-1544-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1544-3

Keywords

Navigation