Skip to main content

Advertisement

Log in

CCL2 is critical for immunosuppression to promote cancer metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

We previously found that cancer metastasis is accelerated by immunosuppression during Snail-induced epithelial-to-mesenchymal transition (EMT). However, the molecular mechanism still remained unclear. Here, we demonstrate that CCL2 is a critical determinant for both tumor metastasis and immunosuppression induced by Snail+ tumor cells. CCL2 is significantly upregulated in various human tumor cells accompanied by Snail expression induced by snail transduction or TGFβ treatment. The Snail+ tumor-derived CCL2 amplifies EMT events in other cells including Snail tumor cells and epithelial cells within tumor microenvironment. CCL2 secondarily induces Lipocalin 2 (LCN2) in the Snail+ tumor cells in an autocrine manner. CCL2 and LCN2 cooperatively generate immunoregulatory dendritic cells (DCreg) having suppressive activity accompanied by lowered expression of costimulatory molecules such as HLA-DR but increased expression of immunosuppressive molecules such as PD-L1 in human PBMCs. The CCL2/LCN2-induced DCreg cells subsequently induce immunosuppressive CD4+FOXP3+ Treg cells, and finally impair tumor-specific CTL induction. In murine established tumor model, however, CCL2 blockade utilizing the specific siRNA or neutralizing mAb significantly inhibits Snail+ tumor growth and metastasis following systemic induction of anti-tumor immune responses in host. These results suggest that CCL2 is more than a chemoattractant factor that is the significant effector molecule responsible for immune evasion of Snail+ tumor cells. CCL2 would be an attractive target for treatment to eliminate cancer cells via amelioration of tumor metastasis and immunosuppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BM:

Bone marrow

CA:

Cryoablation

DC:

Dendritic cell

DCreg:

Immunoregulatory dendritic cell

EMT:

Epithelial-to-mesenchymal transition

F10-mock:

B16-F10 cells transduced with empty vector

F3-snail+ :

Panc1 cells transduced with human snail cDNA

H6-snail+ :

B16-F10 cells transduced with murine snail cDNA

i.t. (IT):

Intratumoral(ly)

LCN2:

Lipocalin 2

MDSCs:

Myeloid-derived suppressor cells

MFI:

Mean of fluorescence intensity

MSCs:

Mesenchymal stem cells

Panc1-mock:

Panc1 cells mock-transfected with empty vector

SPCs:

Spleen cells

TAMs:

Tumor-associated macrophages

Treg:

Regulatory T cells

TSP1:

Thrombospondin 1

References

  1. Radisky DC (2005) Epithelial-mesenchymal transition. J Cell Sci 118(Pt 19):4325–4326

    Article  PubMed  CAS  Google Scholar 

  2. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383

    Article  PubMed  CAS  Google Scholar 

  3. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558

    Article  PubMed  CAS  Google Scholar 

  4. Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 13(16):4769–4776

    Article  PubMed  CAS  Google Scholar 

  5. Yin T, Wang C, Liu T, Zhao G, Zha Y, Yang M (2007) Expression of snail in pancreatic cancer promotes metastasis and chemoresistance. J Surg Res 141(2):196–203

    Article  PubMed  CAS  Google Scholar 

  6. Kuphal S, Palm HG, Poser I, Bosserhoff AK (2005) Snail-regulated genes in malignant melanoma. Melanoma Res 15(4):305–313

    Article  PubMed  CAS  Google Scholar 

  7. Dissanayake SK, Wade M, Johnson CE, O’Connell MP, Leotlela PD, French AD, Shah KV, Hewitt KJ, Rosenthal DT, Indig FE, Jiang Y, Nickoloff BJ, Taub DD, Trent JM, Moon RT, Bittner M, Weeraratna AT (2007) The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem 282(23):17259–17271

    Article  PubMed  CAS  Google Scholar 

  8. Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, Notorfrancesco KL, Cardiff RD, Chodosh LA (2005) The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8(3):197–209

    Article  PubMed  CAS  Google Scholar 

  9. Yang MH, Chang SY, Chiou SH, Liu CJ, Chi CW, Chen PM, Teng SC, Wu KJ (2007) Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene 26(10):1459–1467

    Article  PubMed  CAS  Google Scholar 

  10. Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y (2009) Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15(3):195–206

    Article  PubMed  CAS  Google Scholar 

  11. Inozume T, Matsuzaki Y, Kurihara S, Fujita T, Yamamoto A, Aburatani H, Shimada S, Kawakami Y (2005) Novel melanoma antigen, FCRL/FREB, identified by cDNA profile comparison using DNA chip are immunogenic in multiple melanoma patients. Int J Cancer 114(2):283–290

    Article  PubMed  CAS  Google Scholar 

  12. Yamaguchi H, Tanaka F, Ohta M, Inoue H, Mori M (2004) Identification of HLA-A24-restricted CTL epitope from cancer-testis antigen, NY-ESO-1, and induction of a specific antitumor immune response. Clin Cancer Res 10(3):890–896

    Article  PubMed  CAS  Google Scholar 

  13. Lu Y, Chen Q, Corey E, Xie W, Fan J, Mizokami A, Zhang J (2009) Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clin Exp Metastasis 26(2):161–169

    Article  PubMed  Google Scholar 

  14. Cai Z, Chen Q, Chen J, Lu Y, Xiao G, Wu Z, Zhou Q, Zhang J (2009) Monocyte chemotactic protein 1 promotes lung cancer-induced bone resorptive lesions in vivo. Neoplasia 11(3):228–236

    PubMed  CAS  Google Scholar 

  15. Soria G, Ofri-Shahak M, Haas I, Yaal-Hahoshen N, Leider-Trejo L, Leibovich-Rivkin T, Weitzenfeld P, Meshel T, Shabtai E, Gutman M, Ben-Baruch A (2011) Inflammatory mediators in breast cancer: coordinated expression of TNFalpha & IL-1beta with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer 11:130

    Article  PubMed  CAS  Google Scholar 

  16. Tang CH, Tsai CC (2012) CCL2 increases MMP-9 expression and cell motility in human chondrosarcoma cells via the Ras/Raf/MEK/ERK/NF-kappaB signaling pathway. Biochem Pharmacol 83(3):335–344

    Article  PubMed  CAS  Google Scholar 

  17. Lu Y, Cai Z, Galson DL, Xiao G, Liu Y, George DE, Melhem MF, Yao Z, Zhang J (2006) Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate 66(12):1311–1318

    Article  PubMed  CAS  Google Scholar 

  18. Nam JS, Kang MJ, Suchar AM, Shimamura T, Kohn EA, Michalowska AM, Jordan VC, Hirohashi S, Wakefield LM (2006) Chemokine (C–C motif) ligand 2 mediates the prometastatic effect of dysadherin in human breast cancer cells. Cancer Res 66(14):7176–7184

    Article  PubMed  CAS  Google Scholar 

  19. Taylor MA, Lee YH, Schiemann WP (2011) Role of TGF-beta and the tumor microenvironment during mammary tumorigenesis. Gene Expr 15(3):117–132

    Article  PubMed  Google Scholar 

  20. Zu X, Zhang Q, Cao R, Liu J, Zhong J, Wen G, Cao D (2012) Transforming growth factor-beta signaling in tumor initiation, progression and therapy in breast cancer: an update. Cell Tissue Res 347(1):73–84

    Article  PubMed  CAS  Google Scholar 

  21. Fujisawa T, Joshi BH, Puri RK (2012) IL-13 regulates cancer invasion and metastasis through IL-13Ralpha2 via ERK/AP-1 pathway in mouse model of human ovarian cancer. Int J Cancer 131(2):344–356

    Article  PubMed  CAS  Google Scholar 

  22. Yadav A, Kumar B, Datta J, Teknos TN, Kumar P (2011) IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res 9(12):1658–1667

    Article  PubMed  CAS  Google Scholar 

  23. Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C (2011) IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res 71(15):5296–5306

    Article  PubMed  CAS  Google Scholar 

  24. Devireddy LR, Gazin C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123(7):1293–1305

    Article  PubMed  CAS  Google Scholar 

  25. Lin H, Monaco G, Sun T, Ling X, Stephens C, Xie S, Belmont J, Arlinghaus R (2005) Bcr-Abl-mediated suppression of normal hematopoiesis in leukemia. Oncogene 24(20):3246–3256

    Article  PubMed  CAS  Google Scholar 

  26. Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL, Strong RK, Zurakowski D, Moses MA (2009) Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci USA 106(10):3913–3918

    Article  PubMed  CAS  Google Scholar 

  27. Shi H, Gu Y, Yang J, Xu L, Mi W, Yu W (2008) Lipocalin 2 promotes lung metastasis of murine breast cancer cells. J Exp Clin Cancer Res 27:83

    Article  PubMed  CAS  Google Scholar 

  28. Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A (2008) Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat 108(3):389–397

    Article  PubMed  CAS  Google Scholar 

  29. Lee EK, Kim HJ, Lee KJ, Lee HJ, Lee JS, Kim DG, Hong SW, Yoon Y, Kim JS (2011) Inhibition of the proliferation and invasion of hepatocellular carcinoma cells by lipocalin 2 through blockade of JNK and PI3K/Akt signaling. Int J Oncol 38(2):325–333

    Article  PubMed  CAS  Google Scholar 

  30. Tong Z, Kunnumakkara AB, Wang H, Matsuo Y, Diagaradjane P, Harikumar KB, Ramachandran V, Sung B, Chakraborty A, Bresalier RS, Logsdon C, Aggarwal BB, Krishnan S, Guha S (2008) Neutrophil gelatinase-associated lipocalin: a novel suppressor of invasion and angiogenesis in pancreatic cancer. Cancer Res 68(15):6100–6108

    Article  PubMed  CAS  Google Scholar 

  31. Loberg RD, Ying C, Craig M, Day LL, Sargent E, Neeley C, Wojno K, Snyder LA, Yan L, Pienta KJ (2007) Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res 67(19):9417–9424

    Article  PubMed  CAS  Google Scholar 

  32. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225

    Article  PubMed  CAS  Google Scholar 

  33. Huang B, Lei Z, Zhao J, Gong W, Liu J, Chen Z, Liu Y, Li D, Yuan Y, Zhang GM, Feng ZH (2007) CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett 252(1):86–92

    Article  PubMed  CAS  Google Scholar 

  34. Eruslanov E, Neuberger M, Daurkin I, Perrin GQ, Algood C, Dahm P, Rosser C, Vieweg J, Gilbert SM, Kusmartsev S (2012) Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer. Int J Cancer 130(5):1109–1119

    Article  PubMed  CAS  Google Scholar 

  35. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, Barry FP, O’Brien T, Kerin MJ (2007) Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 13(17):5020–5027

    Article  PubMed  CAS  Google Scholar 

  36. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736

    Article  PubMed  CAS  Google Scholar 

  37. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66(1):1–9

    Article  PubMed  Google Scholar 

  38. Izhak L, Wildbaum G, Jung S, Stein A, Shaked Y, Karin N (2012) Dissecting the autocrine and paracrine roles of the CCR2-CCL2 axis in tumor survival and angiogenesis. PLoS ONE 7(1):e28305

    Article  PubMed  CAS  Google Scholar 

  39. Michielsen AJ, Hogan AE, Marry J, Tosetto M, Cox F, Hyland JM, Sheahan KD, O’Donoghue DP, Mulcahy HE, Ryan EJ, O’Sullivan JN (2011) Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer. PLoS ONE 6(11):e27944

    Article  PubMed  CAS  Google Scholar 

  40. Fridlender ZG, Kapoor V, Buchlis G, Cheng G, Sun J, Wang LC, Singhal S, Snyder LA, Albelda SM (2011) Monocyte chemoattractant protein-1 blockade inhibits lung cancer tumor growth by altering macrophage phenotype and activating CD8+ cells. Am J Respir Cell Mol Biol 44(2):230–237

    Article  PubMed  CAS  Google Scholar 

  41. Chiu HY, Sun KH, Chen SY, Wang HH, Lee MY, Tsou YC, Jwo SC, Sun GH, Tang SJ (2012) Autocrine CCL2 promotes cell migration and invasion via PKC activation and tyrosine phosphorylation of paxillin in bladder cancer cells. Cytokine 59(2):423–432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (18591484, 19390355, 19590405, and 21590445), The Sagawa Foundation for Promotion of Cancer Research, and Keio Gijuku Academic Development Funds.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chie Kudo-Saito or Yutaka Kawakami.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudo-Saito, C., Shirako, H., Ohike, M. et al. CCL2 is critical for immunosuppression to promote cancer metastasis. Clin Exp Metastasis 30, 393–405 (2013). https://doi.org/10.1007/s10585-012-9545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9545-6

Keywords

Navigation