Skip to main content
Log in

Measurements of CO2 and CH4 evasion from UK peatland headwater streams

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Peatland headwater streams are consistently supersaturated with respect to gaseous C and are known to degas CO2 and CH4 directly to the atmosphere. Using a combination of injection of a purposeful gas tracer (propane) and a soluble tracer (NaCl) we carried out 49 measurements of the gas transfer coefficient on 12 representative stream reaches to quantify the gas transfer rates of CO2 and CH4 in headwater (1st–3rd order) streams draining six UK peatlands. These were compared to measured stream reach physical variables, such as discharge and water travel time. Whilst we found that evasion rates were highly variable in space and time, \( {\text{K}}_{{{\text{CO}}_{2} }} \) (gas transfer coefficient of CO2) was positively related to discharge. Individual study sites showed a high degree of variability in gas transfer rates; at all 49 sites median/mean values for \( {\text{K}}_{{{\text{CO}}_{2} }} \) were 0.087/0.157 and \( {\text{K}}_{{{\text{CH}}_{4} }} \) 0.092/0.176 min−1. Median/mean instantaneous CO2 and CH4 evasion rates were 133/367 and 0.22/1.45 μg C m−2 s−1, respectively. Methane evasion rates were therefore more than two orders of magnitude lower than CO2, with CH4 invasion (rather than evasion) measured on 37 % of occasions. Our gas flux measurements from peatland headwater streams are higher than values previously used to estimate landscape scale fluxes and emphasise the importance of the evasion flux term in the overall carbon balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Belanger TV, Korzum EA (1991) Critique of floating dome technique for estimating reaeration rates. J Environ Eng 117:144–150

    Article  Google Scholar 

  • Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Global Biogeochem Cycles 18:GB1024. doi:10.1029/2003GB002058

  • Billett MF, Moore TR (2008) Supersaturation and evasion of CO2 and CH4 in surface waters at Mer Bleue peatland, Canada. Hydrol Process 22:2044–2054

    Article  Google Scholar 

  • Billett MF, Garnett MH, Harvey F (2007) UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers. Geophys Res Lett 34:L23401. doi:10.1029/2007GL031797

    Article  Google Scholar 

  • Billett MF, Charman DJ, Clark JM, Evans CD, Evans MG, Ostle NJ, Worrall F, Burden A, Dinsmore KJ, Jones T, McNamara NP, Parry L, Rowson JG, Rose R (2010) Carbon balance of UK peatlands: current state of knowledge and future research challenges. Clim Res 45:13–29. Special Issue on “Climate Change and the British Uplands”. doi:10.3354/cr00903

    Google Scholar 

  • Billett MF, Dinsmore KJ, Smart RP, Garnett MH, Holden J, Chapman P, Baird AJ, Grayson R, Stott AW (2012) Variable source and age of different forms of carbon released from natural peatland pipes. J Geophys Res 117:G02003. doi:02010.01029/02011JG001807

    Article  Google Scholar 

  • Borges AV, Delille B, Schiettecatte LS, Gazeau F, Abril G, Frankignoulle M (2004) Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol Oceanogr 49:1630–1641

    Article  Google Scholar 

  • Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4. doi:10.1038/NGEO1294

  • Cole JJ, Caraco NE (1998) Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–656

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelbugh JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185

    Article  Google Scholar 

  • Cole JJ, Bade DL, Bastviken D, Pace ML, Van de Bogert M (2010) Multiple approaches to estimating air-water gas exchange in small lakes. Limnol Oceanogr Methods 8:285–293

    Article  Google Scholar 

  • Dawson JJC, Hope D, Cresser MS, Billett MF (1995) Downstream changes in free carbon dioxide in an upland catchment from Northeastern Scotland. J Environ Qual 24:699–706

    Article  Google Scholar 

  • Dawson JJC, Billett MF, Neal C, Hill S (2002) A comparison of particulate, dissolved and gaseous carbon in two contrasting upland streams in the UK. J Hydrol 257:226–246

    Article  Google Scholar 

  • Dawson JJC, Billett MF, Hope D, Palmer SM, Deacon CM (2004) Sources and sinks of aquatic carbon in a peatland stream continuum. Biogeochem 70:71–92

    Article  Google Scholar 

  • Dinsmore KJ, Billett MF (2008) Continuous measurement and modeling of CO2 losses from a peatland stream during stormflow events. Water Resour Res 44:W12417. doi:10.1029/2008WR007284

    Article  Google Scholar 

  • Dinsmore KJ, Billett MF, Moore TR (2009) Transfer of carbon dioxide and methane through the soil-water-atmosphere system at Mer Bleue peatland, Canada. Hydrol Process 23:330–341

    Article  Google Scholar 

  • Dinsmore KJ, Billett MF, Skiba UM, Rees RM, Helfter C (2010) Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Global Change Biol 16:2750–2762. doi:10.1111/j.1365-2486.2009.02119.x

    Article  Google Scholar 

  • Dinsmore KJ, Smart RP, Billett MF, Holden J, Baird AJ, Chapman PJ (2011) Greenhouse gas losses from peatland pipes: a major pathway for loss to the atmosphere? J Geophys Res Biogeosci 116:G03041. doi:10.1029/2011JG001646

    Article  Google Scholar 

  • Dinsmore KJ, Wallin MB, Johnson MS, Billett MF, Bishop K, Pumpanen J, Ojala A. Contrasting stormflow CO2 dynamics in headwater streams: a multi-catchment comparison. JGR Biogeosci (in review)

  • Doctor DH, Kendell C, Sebestyen SD, Shankley JB, Ohte N, Boyer EW (2008) Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream. Hydrol Process 22:2410–2423

    Article  Google Scholar 

  • Drewer J, Lohila A, Aurela M, Laurila T, Minkkinen K, Pentilla T, Dinsmore KJ, McKenzie RM, Helfter C, Flechard C, Sutton MA, Skiba UM (2010) Comparison of greenhouse gas fluxes and nitrogen budgets from an ombotrophic bog in Scotland and a minerotrophic sedge fen in Finland. Eur J Soil Sci 61:640–650

    Article  Google Scholar 

  • Dyson KE, Billett MF, Dinsmore KJ, Harvey F, Thomson A, Piirainen S, Kortelainen P (2010) Release of aquatic carbon from two peatland catchments in E. Finland during the spring snow melt event. Biogeochemistry 103:125–142. doi:10.1007/s10533-010-9452-3

    Google Scholar 

  • Fielder S, Höll BS, Jungkunst HF (2006) Discovering the importance of lateral CO2 transport from a temperate spruce forest. Sci Total Environ 368:909–915

    Article  Google Scholar 

  • Genereux DP, Hemond HF (1992) Determination of gas exchange rates for a small stream on Walker Branch watershed, Tennessee. Water Resour Res 28:2365–2374

    Article  Google Scholar 

  • Guérin F, Abril G, Serça D, Delon C, Richard S, Delmas R, Tremblay A, Varfalvy L (2007) Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. J Mar Syst 66:161–172

    Article  Google Scholar 

  • Hall RO, Tank JL (2003) Ecosystem metabolism controls nitrogen uptake in streams in Grand Teton National Park, Wyoming. Limnol Oceanogr 48:1120–1128

    Article  Google Scholar 

  • Hall RO, Tank JL (2005) Correcting whole-stream estimates of metabolism for groundwater input. Limnol Oceanogr Methods 3:222–229. doi:10.4319/lom.2005.3.222

    Article  Google Scholar 

  • Heikkinen JEP, Maljanen M, Aurela M, Hargreaves KJ, Martikainen PJ (2002) Carbon dioxide and methane dynamics in a sub-Arcticpeatland in northern Finland. Polar Res 21:49–62

    Article  Google Scholar 

  • Hope D, Dawson JJC, Cresser MS, Billett MF (1995) A method for measuring free-CO2 in upland streamwater using headspace analysis. J Hydrol 166:1–14

    Article  Google Scholar 

  • Hope D, Palmer SM, Billett MF, Dawson JJC (2001) Carbon dioxide and methane evasion from a temperate peatland stream. Limnol Oceanogr 46:847–857

    Article  Google Scholar 

  • Hope D, Palmer SM, Billett MF, Dawson JJC (2004) Variations in dissolved CO2 and CH4 in a first-order stream and catchment: an investigation of soil-stream linkages. Hydrol Process 18:3255–3275

    Article  Google Scholar 

  • Humborg C, Mörth CM, Sundbom M, Borg H, Blenckner T, Giesler R, Ittekot V (2010) CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Global Change Biol 16:1966–1978

    Article  Google Scholar 

  • Johnson MS, Lehmann J, Riha SJ, Krusche AV, Richey JE, Ometto JPHB, Couto EG (2008) CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett 35:L17401. doi:10.1029/2008GL034619

    Article  Google Scholar 

  • Johnson MS, Billett MF, Dinsmore KJ, Wallin M, Dyson K (2010) Direct in situ measurement of dissolved carbon dioxide in freshwater aquatic systems—method and applications. Ecohydrology 3:68–78. doi:10.1002/eco.95

    Google Scholar 

  • Jones BJ, Mulholland PJ (1998a) Methane input and evasion in a hardwood forest stream: effects of subsurface flow from shallow and deep pathways. Limnol Oceanogr 43:1243–1250

    Article  Google Scholar 

  • Jones BJ, Mulholland PJ (1998b) Carbon dioxide variation in a hardwood forest stream: an integrative measure of whole catchment soil respiration. Ecosystems 1:183–196

    Article  Google Scholar 

  • Jonsson AG, Algesten G, Bergstrom AK, Bishop K, Sobek S, Tranvik LJ, Jansson M (2007) Integrating aquatic carbon fluxes in a boreal catchment carbon budget. J Hydrol 334:141–150

    Article  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere—implications for tundra carbon budgets. Science 251:298–301

    Article  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1992) The flux of CO2 and CH4 from lakes and rivers in arctic Alaska. Hydrobiologia 240:23–36

    Article  Google Scholar 

  • MacDonald JA, Fowler D, Hargreaves KJ, Skiba U, Leith ID, Murray MB (1998) Methane emission rates from a northern wetland; response to temperature, water table and transport. Atmos Environ 32:3219–3227

    Article  Google Scholar 

  • MacIntyre S, Wanninkhof R, Chanton JP (1995) Trace gas exchange across the air–water interface in freshwater and coastal marine environments. In: Matson PA, Harriss RC (eds) Biogenic trace gases: measuring emissions from soil and water. Blackwell, Oxford

    Google Scholar 

  • Marzolf ER, Mulholland PJ, Steinman AD (1994) Improvements to the diurnal upstream–downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can J Fish Aquat Sci 51:1591–1599

    Article  Google Scholar 

  • Matthews CJD, St Louis VL, Hesslein RH (2003) Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces. Environ Sci Technol 37:772–780

    Article  Google Scholar 

  • Neal C, House WA, Down C (1998) An assessment of excess carbon dioxide partial pressures in natural waters based on pH and alkalinity measurements. Sci Total Environ 210–211:173–185

    Article  Google Scholar 

  • Nilsson M, Sagerfors J, Buffam I, Laudon H, Eriksson T, Grelle A, Klemedtsson L, Weslien P, Lindroth A (2008) Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—a significant sink after accounting for all C-fluxes. Global Change Biol 14:2317–2332

    Article  Google Scholar 

  • O’Brien HE, Labadz JC, Butcher DP, Billett MF, Midgley NG (2008) Impact of catchment management upon dissolved organic carbon and stream flows in the Peak District, Derbyshire, UK. In: Sustainable hydrology for the 21st century, Proceedings of the 10th BHS National Hydrology Symposium, Exeter, pp 178–185

  • Rantakari M, Kortelainen P (2005) Interannual variation and climatic regulation of the CO2 emission from large boreal lakes. Global Change Biol 11:1368–1380

    Article  Google Scholar 

  • Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24:312–317

    Article  Google Scholar 

  • Reira JL, Schindler JE, Kratz TK (1999) Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, USA. Can J Fish Aquat Sci 56:265–274

    Article  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Article  Google Scholar 

  • Roberts BJ, Mulholland PJ, Hill WJ (2007) Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10:588–606

    Article  Google Scholar 

  • Roulet NT, Crill PM, Comer NT, Dove A, Bourbonniere RA (1997) CO2 and CH4 flux between a boreal beaver pond and the atmosphere. J Geophys Res 102(D24):29313–29319

    Article  Google Scholar 

  • Shaw EM, Beven KJ, Chappell NA, Lamb R (2010) Hydrology in practice, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Teodoru C, Del Giorgio PA, Prairie YT, Camire M (2009) Patterns in pCO2 in boreal streams and rivers of northern Quebec, Canada. Global Biogeochem Cycles 23:B2012. doi:10.1029/2008GB003404

    Article  Google Scholar 

  • Vachon D, Prairie YT, Cole JJ (2010) The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol Oceanogr 55:1723–1732

    Article  Google Scholar 

  • Wallin MB, Öquist MG, Buffam I, Billett MF, Nisell J, Bishop KH (2011) Spatiotemporal variability of the gas transfer coefficient (KCO2) in boreal streams; implications for large scale estimates of CO2 evasion. Global Biogeochem Cycles GB3025. doi:10.1029/2010GB003975

  • Wanninkhof R, Mulholland PJ, Elwood JW (1990) Gas exchange rates for a first order stream determined with deliberate and natural tracers. Water Resour Res 26:1621–1630

    Google Scholar 

  • Worrall F, Burt T, Adamson JK (2005) Fluxes of dissolved carbon dioxide and inorganic carbon from an upland pet catchment: implications for soil respiration. Biogeochemistry 73:515–539

    Article  Google Scholar 

  • Zappa CJ, Raymond PA, Terray EA, McGillis WR (2003) Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries 26:1401–1415

    Article  Google Scholar 

  • Zappa CJ, McGillis WR, Raymond PA, Edson JB, Hinsta EJ, Zemmelink HJ, Dacey JWH, Ho DT (2007) Environmental turbulent mixing controls on air–water gas exchange in marine and aquatic systems. Geophys Res Lett 34:L10601. doi:10.1029/2006GL028790

    Article  Google Scholar 

Download references

Acknowledgments

Support for this research was provided by the UK Natural Environment Research Council through an Advanced Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Billett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billett, M.F., Harvey, F.H. Measurements of CO2 and CH4 evasion from UK peatland headwater streams. Biogeochemistry 114, 165–181 (2013). https://doi.org/10.1007/s10533-012-9798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-012-9798-9

Keywords

Navigation