Skip to main content

Advertisement

Log in

Mapping patterns of ferns species richness through the use of herbarium data

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

This paper aims to analyse the spatial patterns of sampling effort and species richness of pteridophyte in a well-investigated region as Tuscany, Italy, by using data stored from a geodatabase storing information on the specimens preserved in the main herbaria of the region. A total of 6,905 records about pteridophyte specimens were extracted from the geodatabase, and 5,638 of such specimens were studied through the use of spatial statistical techniques. The data about the sampling effort and species richness were analysed in relation to topographical variables to assess any significant relationship. Specimen-based rarefaction techniques were used to compare areas with different number of detected species. The analysis of the sampling effort data showed a nonhomogeneous distribution of herbarium data, with some areas being intensively sampled and others being almost unsampled. Thus, the geographical distribution of specimens was extremely clustered. The comparison across geographical areas through specimen-based rarefaction curves showed great differences in species richness and sampling completeness. The analysis of the residuals of species–area relationships evidenced that the distance to water bodies was the only significant topographical variable in controlling species diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahrends A, Rahbek C, Bulling MT, Burgess ND, Platts PJ, Lovett JC, Kindemba VW, Owen N, Sallu AN, Marshall AR, Mhoro BE, Fanning E, Marchant R (2011) Conservation and the botanist effect. Biol Conserv 144(1):131–140

    Article  Google Scholar 

  • Baldini RM (1998) Flora vascolare dell’Isola del Giglio (Arcipelago Toscano): revisione tassonomica ed aggiornamento. Webbia 52(2):307–404

    Article  Google Scholar 

  • Baldini RM (2000) Flora vascolare dell’Isola di Pianosa (Arcipelago Toscano): revisione tassonomica e aggiornamento. Webbia 55(1):107–189

    Article  Google Scholar 

  • Baldini RM (2001) Flora vascolare dell’Isola di Giannutri (Arcipelago Toscano). Webbia 56(1):69–125

    Article  Google Scholar 

  • Barsotti G (2008) Flora, vegetazione ed ambiente delle isole dell’Arcipelago toscano. Consiglio Nazionale delle Ricerche, Roma–Pacini Editore 240

    Google Scholar 

  • Brown JH (1988) Species diversity. In: Myers AA, Giller PS (eds) Analytical biogeography: an integrated approach to the study of animal and plant distribution. Chapman & Hall, New York, pp 57–89

    Google Scholar 

  • Chiarucci A (2007) To sample or not to sample? that is the question for the vegetation scientist. Folia Geobotanica 42(2):209–216

    Article  Google Scholar 

  • Chiarucci A, Bonini I (2005) Quantitative floristics as a tool for the assessment of plant diversity in Tuscan forests. For Ecol Manag 212:160–170

    Article  Google Scholar 

  • Chiarucci A, Bacaro G, Rocchini D (2008) Quantifying plant species diversity in a natura 2000 network: old ideas and new proposals. Biol Conserv 141(10):2608–2618

    Article  Google Scholar 

  • Christopher NP (2002) Ecological strategies in fern evolution: a neopteridological overview. Rev Palaeobot Palynol 119(1–2):1–33

    Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion Limited, London

    Google Scholar 

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B 345(1311):101–118

    Article  CAS  Google Scholar 

  • Connor EF, Simberloff D (1978) Species Number and Compositional Similarity of the Galápagos Flora and Avifauna. Ecol Monogr 48(2):219–248

    Article  Google Scholar 

  • Cotterill FPD (1995) Systematics, biological knowledge and environmental conservation. Biodivers Conserv 4(2):183–205

    Article  Google Scholar 

  • Cox B (2001) The biogeographic regions reconsidered. J Biogeogr 28:511–523

    Article  Google Scholar 

  • Davis P (1996) Museums and the natural environment: the role of natural history museums in biological conservation. Leicester University Press, London

    Google Scholar 

  • Delgado M, Fajardo W, Gibaja E, Perez–Perez R (2005) BioMen: an information system to herbarium. Expert Syst Appl 28(3):507–518

    Article  Google Scholar 

  • Dengler J (2009) Which function describes the species–area relationship best?: a review and empirical evaluation. J Biogeogr 36:728–744

    Article  Google Scholar 

  • Dennis RLH, Sparks TH, Hardy PB (1999) Bias in butterfly distribution maps: the effects of sampling effort. J Insect Conserv 3(1):33–42

    Article  Google Scholar 

  • Diekmann M, Kühne A, Isermann M (2007) Randoms non-random sampling: effects on patterns of species abundance, species richness and vegetation-environment relationships. Folia Geobotanica 42(2):179–190

    Article  Google Scholar 

  • Duckworth WD, Genoways HH, Rose CL (1993) Preserving natural science collections: chronicle of our environmental heritage. National Institute for the Conservation of Cultural Property, Washington, DC

    Google Scholar 

  • Foggi B, Grigioni A, Luzzi P (2001) La flora vascolare dell’Isola di Capraia (Arcipelago Toscano): aggiornamento, aspetti fitogeografici e di conservazione. Parlatorea 5:5–53

    Google Scholar 

  • Foggi B, Cartei L, Pignotti L, Signorini MA, Viciani D, Dell’Olmo L, Menicagli E (2006) Il paesaggio vegetale dell’Isola d’Elba (Arcipelago Toscano). Studio di fitosociologia e cartografico. Fitosociologia 43(Suppl. 1):3–95

    Google Scholar 

  • Foggi B, Guidi T, Capecchi M, Baldini RM, Grigioni A (2009) Biological flora of the Tuscan Archipelago islets (Tyrrhenian Sea). Webbia 64(1):23–45

    Article  Google Scholar 

  • Foggi B, Lastrucci L, Viciani D, Brunialti G, Benesperi R (2011) Long-term monitoring of an invasion process: the case of an isolated small wetland on a Mediterranean Island. Biologia 66(4):638–644

    Article  Google Scholar 

  • Foody GM (2008) GIS: biodiversity applications. Prog Phys Geogr 32:223–235

    Article  Google Scholar 

  • Frangini G, Romolini R, Sodi F, Bisti M, Filippi L, Mannocci M, Quochi B (2005) Orchidee dell’Isola d’Elba (Arcipelago Toscano). GIROS Notizie 28:1–16

    Google Scholar 

  • Garbari F, Bedini G (2006) The flora of the Apuan Alps (Tuscany, Italy): survey of biosystematic investigations. Willdenowia 36:149–155

    Article  Google Scholar 

  • Garcillan PP, Ezcurra E (2011) Sampling procedures and species estimation: testing the effectiveness of herbarium data against vegetation sampling in an oceanic island. J Veg Sci 22:273–280

    Article  Google Scholar 

  • Geri F, Lastrucci L, Viciani D, Foggi B, Bonini I, Maccherini S, Chiarucci A (2011) GIFT-verso un database della flora toscana. Geomatic Workb 10:115–128

    Google Scholar 

  • Giacomini V (1943) Saggio fitogeografico sulle Pteridofite d’Italia. In: Fiori A (ed) Flora Italica Cryptogama Pars 5: Pteridophyta, Firenze pp 457-574

  • Gillman M (2009) An introduction to mathematical models in ecology and evolution : time and space 2nd edn. Wiley-Blackwell, Chichester

    Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4(4):379–391

    Article  Google Scholar 

  • Graham HC, Ferrier S, Huettman F, Moritz C, Townsend AP (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19(9):497–503

    Article  PubMed  Google Scholar 

  • Hammond PM (1994) Practical approaches to the estimation of the extent of biodiversity in speciose groups. Philos Trans R Soc Lond B 345:119–136

    Article  Google Scholar 

  • Heck KL, Van Belle G, Simberloff D (1975) Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:1459–1461

    Article  Google Scholar 

  • Hijmans RJ, Garrett KA, Huamán Z, Zhang DP, Schreuder M, Zhang DP, Schreuder M, Bonierbale M (2000) Assessing the geographic representativeness of genebank collections: the case of bolivian wild potatoes. Conserv Biol 14(6):1755–1765

    Article  Google Scholar 

  • Holmgren PK, Holmgren NH, Barnett LC (1990) Index herbariorum Part 1 The herbaria of the world, 8th ed, vol 120, Regnum Vegetables series, pp 1-693

  • Koellner T, Hersperger AM, Wohlgemuth T (2004) Rarefaction method for assessing plant species diversity on a regional scale. Ecography 27:532–544

    Article  Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606

    Article  Google Scholar 

  • Michalcová D, Lvončík S, Chytrý M, Hájek O (2011) Bias in vegetation databases? A comparison of stratified-random and preferential sampling. J Veg Sci 22(2):281–291

    Article  Google Scholar 

  • Moerman DE, Estabrook GF (2006) The botanist effect: counties with maximal species richness tend to be home to universities and botanists. J Biogeogr 33(11):1969–1974

    Article  Google Scholar 

  • Moggi G, Miglietti N, Paoli P (1987) Bibliografìa geobotanica toscana. Museo Botanico, Dip. Biol. Veget., Firenze

  • Moreno CE, Halffter G (2000) Assessing the completeness of bat biodiversity inventories using species accumulation curves. J Appl Ecol 37(1):149–158

    Article  Google Scholar 

  • Morin NR, Gomon J (1993) Data banking and the role of the natural history collections. Ann Missouri Bot Gard 80(2):317–322

    Article  Google Scholar 

  • Palmer MW (1995) How could one count species. Nat Areas J 15:124–135

    Google Scholar 

  • Palmer MW, Earls PG, Hoagland BW, White PS, Wohlgemuth T (2002) Quantitative tools for perfecting species lists. Environmetrics 13(2):121–137

    Article  Google Scholar 

  • Palmer MW, McGlinn DJ, Fridley JD (2008) Artifacts and artifictions in biodiversity research. Folia Geobotanica 43(3):245–257

    Article  Google Scholar 

  • Pautasso M, McKinney ML (2007) The botanist effect revisited: plant species richness, county area, and human population size in the United States. Conserv Biol 21(5):1333–1340

    Article  PubMed  Google Scholar 

  • Pedrotti F (1988) 100 anni di ricerche botaniche in Italia (1888–1988), vol 2. Società Botanica Italiana, Florence

    Google Scholar 

  • Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285(5431):1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Peterson AT, Papes M, Kluza DA (2003) Predicting the potential invasive distributions of four alien plant species in North America. Weed Sci 51(6):863–868

    Article  CAS  Google Scholar 

  • Podani J (1984) Spatial processes in the analysis of vegetation: theory and review. Acta Botanica Hungarica 30:75–118

    Google Scholar 

  • Ponder WF, Carter GA, Flemons P, Chapman RR (2001) Evaluation of museum collection data for use in biodiversity assessment. Conserv Biol 15(3):648–657

    Article  Google Scholar 

  • R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/.

  • Rapetti F, Vittorini S (1995) Carta climatica della Toscana. Pacini Editore, Pisa

    Google Scholar 

  • Rocchini D, Hortal J, Lengyel S, Lobo JM, Jimenez-Valverde A, Ricotta C, Bacaro G, Chiarucci A (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geogr 35(2):211–226

    Article  Google Scholar 

  • Sastre P, Lobo JM (2009) Taxonomist survey biases and the unveiling of biodiversity patterns. Biol Conserv 142(2):462–467

    Article  Google Scholar 

  • Schulman L, Toivonen T, Ruokolainen K (2007) Analysing botanical collecting effort in Amazonia and correcting for it in species range estimation. J Biogeogr 34(8):1388–1399

    Article  Google Scholar 

  • Shaffer HB, Fisher RN, Davidson C (1998) The role of natural history collections in documenting species declines. Trends Ecol Evol 13(1):27–30

    Article  PubMed  CAS  Google Scholar 

  • Solow AR, Roberts DL (2006) Museum collections, species distributions, and rarefaction. Divers Distrib 12(4):423–424

    Article  Google Scholar 

  • Sommier S (1902) La flora dell’Arcipelago Toscano. Nuovo Giorn. Bot. Ital. 9:319–354.

  • Sommier S (1903) La flora dell’Arcipelago Toscano. Nuovo Giorn. Bot. Ital. 10:133–200.

  • Soulé ME, Orians GH (2001) Conservation biology: research priorities for the next decade. Island Press, Washington, DC

    Google Scholar 

  • Tobler M, Honorio E, Janovec J, Reynel C (2007) Implications of collection patterns of botanical specimens on their usefulness for conservation planning: an example of two neotropical plant families (Moraceae and Myristicaceae) in Peru. Biodivers Conserv 16(3):659–677

    Article  Google Scholar 

  • Wilson JP, Fotheringham AS (2008) The handbook of geographic information science. Blackwell Publishing, Malden

    Google Scholar 

Download references

Acknowledgments

This study forms part of the GIFT project (Geographical Information on the Flora of Tuscany), funded by the Tuscany Region through the European POR-FSE fund. The authors thank all the people who supported and collaborated to this project by providing their plant collections or through the direct insert of the specimens into the database. In particular, many thanks go to Federico Selvi (Department of Agricultural Biotecnology Agrarie of University of Florence), Lorenzo Cecchi and Chiara Nepi (Natural History Museum of University of Florence), Lucia Amadei and Silvia Maccioni (Department of Biology of University of Pisa), Andrea Voirgar (Agricultural Technical College of Pescia), Elisa Santi and Sara Landi (Department of Environmental Science of University of Siena), Paolo Emilio Tomei and Serena Trimarchi (Department of Agronomy of University of Pisa), Pier Virgilio Arrigoni (University of Florence) and Fausto Bonafede. Many thanks also go to Roberto Venanzoni and Edoardo Panfili (University of Perugia) for the technical support and to Dino Marchetti for the huge amount of specimens provided and for the precious support for plants’ determination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Geri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geri, F., Lastrucci, L., Viciani, D. et al. Mapping patterns of ferns species richness through the use of herbarium data. Biodivers Conserv 22, 1679–1690 (2013). https://doi.org/10.1007/s10531-013-0503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0503-7

Keywords

Navigation