Skip to main content
Log in

Xylitol production by Pseudomonas gessardii VXlt-16 from sugarcane bagasse hydrolysate and cost analysis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Xylitol is a well-known sugar alcohol with exponentially rising market demand due to its diverse industrial applications. Organic agro-industrial residues (OAIR) are economic alternative for the cost-effective production of commodity products along with addressing environmental pollution. The present study aimed to design a process for xylitol production from OAIR via microbial fermentation with Pseudomonas gessardii VXlt-16. Parametric analysis with Taguchi orthogonal array approach resulted in a conversion factor of 0.64 g xylitol/g xylose available in untreated sugarcane bagasse hydrolysate (SBH). At bench scale, the product yield increased to 71.98/100 g (0.66 g/L h). 48.49 g of xylitol crystals of high purity (94.56%) were recovered after detoxification with 2% activated carbon. Cost analysis identified downstream operations as one of the cost-intensive parts that can be countered by adsorbent recycling. Spent carbon, regenerated with acetic acid washing can be reused for six cycles effectively and reduced downstream cost by about ≈32%. The strategy would become useful in the cost-effective production of several biomass-dependent products like proteins, enzymes, organic acids, as well.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The data sets supporting the results of this article are included within the article and submitted as supplementary files.

Abbreviations

XR:

Xylose reductase

XDH:

Xylitol dehydrogenase

XI:

Xylose isomerase

LCR:

Lignocellulosic residues

References

  1. Ahuja V, Macho M, Ewe D et al (2020) Biological and pharmacological potential of xylitol: a molecular insight of unique metabolism. Foods 9:1592. https://doi.org/10.3390/foods9111592

    Article  CAS  PubMed Central  Google Scholar 

  2. Kaliyan B, Ameer K, Agastian P (2016) Optimization of parameters to increase the xylose reductase production from Candida tropicalis strain LY15 using corn cob as hemicellulose waste substrates. Afr J Microbiol Res 10:1908–1917. https://doi.org/10.5897/ajmr2016.8330

    Article  CAS  Google Scholar 

  3. Mäkinen KK (2000) The rocky road of xylitol to its clinical application. J Dent Res 79:1352–1355. https://doi.org/10.1177/00220345000790060101

    Article  PubMed  Google Scholar 

  4. Akpe SG, Choi SH, Ham HC (2021) Conversion of cyclic xylose into xylitol on Ru, Pt, Pd, Ni, and Rh catalysts: a density functional theory study. Phys Chem Chem Phys 23:26195–26208. https://doi.org/10.1039/D1CP04660H

    Article  CAS  PubMed  Google Scholar 

  5. Arifan F, Nuswantari S (2020) The xylitol production efficiency from corn cob waste by using stirred tank bioreactor-tubular loop liquid emulsion membrane (LEM). IOP Conf Ser Earth Environ Sci 448:012023. https://doi.org/10.1088/1755-1315/448/1/012023

    Article  Google Scholar 

  6. He Y, Li H, Chen L et al (2021) Production of xylitol by Saccharomyces cerevisiae using waste xylose mother liquor and corncob residues. Microb Biotechnol 14:2059–2071. https://doi.org/10.1111/1751-7915.13881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang B-X, Xie C-Y, Xia Z-Y et al (2020) The effect of xylose reductase genes on xylitol production by industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. Process Biochem 95:122–130. https://doi.org/10.1016/j.procbio.2020.05.023

    Article  CAS  Google Scholar 

  8. Ahuja V, Bhatt AK (2018) Trichoderma viride (MTCC 800): a potential candidate for agri-horti waste utilization by solid state fermentation. Int J Environ Sci Technol 15:2679–2684. https://doi.org/10.1007/s13762-018-1796-6

    Article  CAS  Google Scholar 

  9. Araújo D, Costa T, Freitas F (2021) Biovalorization of lignocellulosic materials for xylitol production by the yeast Komagataella pastoris. Appl Sci 11:5516. https://doi.org/10.3390/app11125516

    Article  CAS  Google Scholar 

  10. Rathour RK, Ahuja V, Bhatia RK, Bhatt AK (2018) Biobutanol: new era of biofuels. Int J Energy Res 42:4532–4545. https://doi.org/10.1002/er.4180

    Article  Google Scholar 

  11. Yu H-T, Chen B-Y, Li B-Y et al (2018) Efficient pretreatment of lignocellulosic biomass with high recovery of solid lignin and fermentable sugars using Fenton reaction in a mixed solvent. Biotechnol Biofuels 11:287. https://doi.org/10.1186/s13068-018-1288-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Periyasamy S, Karthik V, Senthil Kumar P, et al (2022) Chemical, physical and biological methods to convert lignocellulosic waste into value-added products. A review. Environ Chem Lett. https://doi.org/10.1007/s10311-021-01374-w

  13. Brodeur G, Yau E, Badal K et al (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:e787532. https://doi.org/10.4061/2011/787532

    Article  CAS  Google Scholar 

  14. Lee YY, Iyer P, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. In: Tsao GT, Brainard AP, Bungay HR et al (eds) Recent progress in bioconversion of lignocellulosics. Springer, Berlin, Heidelberg, pp 93–115

    Chapter  Google Scholar 

  15. Halder P, Kundu S, Patel S et al (2019) Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renew Sustain Energy Rev 105:268–292. https://doi.org/10.1016/j.rser.2019.01.052

    Article  CAS  Google Scholar 

  16. Tian X, Fang Z, Guo F (2012) Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels Bioprod Bioref 6:335–350. https://doi.org/10.1002/bbb.346

    Article  CAS  Google Scholar 

  17. Ahuja V, Kshirsagar S, Ghosh P et al (2022) Process development for detoxification of corncob hydrolysate using activated charcoal for xylitol production. J Environ Chem Eng 10:107097. https://doi.org/10.1016/j.jece.2021.107097

    Article  CAS  Google Scholar 

  18. Dasgupta D, Sidana A, Sarkar B et al (2022) Process development for crystalline xylitol production from corncob biomass by Pichia caribbica. Food Bioprod Process. https://doi.org/10.1016/j.fbp.2022.02.006

    Article  Google Scholar 

  19. Varilla-Mazaba A, Raggazo-Sánchez JA, Calderón-Santoyo M et al (2022) Multi-response optimization of acid hydrolysis in sugarcane bagasse to obtain high xylose concentration. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02404-5

    Article  Google Scholar 

  20. Kim S (2019) Xylitol production from byproducts generated during sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber by an adapted Candida tropicalis. Front Energy Res. https://doi.org/10.3389/fenrg.2019.00072

    Article  Google Scholar 

  21. de Medeiros LL, da Silva FLH, Santos SFM et al (2017) Bioconversion of hydrolyzed cashew peduncle bagasse for ethanol and xylitol production. Rev Bras Eng Agríc Ambient 21:488–492. https://doi.org/10.1590/1807-1929/agriambi.v21n7p488-492

    Article  Google Scholar 

  22. Meng J, Chroumpi T, Mäkelä MR, de Vries RP (2022) Xylitol production from plant biomass by Aspergillus niger through metabolic engineering. Biores Technol 344:126199. https://doi.org/10.1016/j.biortech.2021.126199

    Article  CAS  Google Scholar 

  23. Morais Junior WG, Pacheco TF, Trichez D et al (2019) Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. Yeast 36:349–361. https://doi.org/10.1002/yea.3394

    Article  CAS  PubMed  Google Scholar 

  24. Baptista SL, Cunha JT, Romaní A, Domingues L (2018) Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2. Biores Technol 267:481–491. https://doi.org/10.1016/j.biortech.2018.07.068

    Article  CAS  Google Scholar 

  25. Asif MB, Hai FI, Jegatheesan V et al (2019) Chapter 8—applications of membrane bioreactors in biotechnology processes. In: Basile A, Charcosset C (eds) Current trends and future developments on (bio-) membranes. Elsevier, Amsterdam, pp 223–257

  26. Pais C, Franco-Duarte R, Sampaio P et al (2016) Chapter 9—production of dicarboxylic acid platform chemicals using yeasts: focus on succinic acid. In: Poltronieri P, D’Urso OF (eds) Biotransformation of agricultural waste and by-products. Elsevier, Amsterdam, pp 237–269

  27. Ghaedi M, Nasab AG, Khodadoust S et al (2014) Application of activated carbon as adsorbents for efficient removal of methylene blue: kinetics and equilibrium study. J Ind Eng Chem 20:2317–2324. https://doi.org/10.1016/j.jiec.2013.10.007

    Article  CAS  Google Scholar 

  28. Saleem J, Shahid UB, Hijab M et al (2019) Production and applications of activated carbons as adsorbents from olive stones. Biomass Conv Bioref 9:775–802. https://doi.org/10.1007/s13399-019-00473-7

    Article  CAS  Google Scholar 

  29. Moona N, Murphy KR, Bondelind M et al (2018) Partial renewal of granular activated carbon biofilters for improved drinking water treatment. Environ Sci Water Res Technol 4:529–538. https://doi.org/10.1039/C7EW00413C

    Article  CAS  Google Scholar 

  30. Larasati A, Fowler DG, Graham NJ (2020) Chemical regeneration of granular activated carbon: preliminary evaluation of alternative regenerant solutions. Environ Sci Water Res Technol 6:2043–2056. https://doi.org/10.1039/D0EW00328J

    Article  CAS  Google Scholar 

  31. Kow S-H, Fahmi MR, Abidin CZA et al (2016) Regeneration of spent activated carbon from industrial application by NaOH solution and hot water. Desalin Water Treat 57:29137–29142. https://doi.org/10.1080/19443994.2016.1168133

    Article  CAS  Google Scholar 

  32. Hwang SY, Lee GB, Kim JH et al (2020) Pre-Treatment methods for regeneration of spent activated carbon. Molecules 25:4561. https://doi.org/10.3390/molecules25194561

    Article  CAS  PubMed Central  Google Scholar 

  33. Zhou H, Cheng Sheng J, Wang BL et al (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611–622. https://doi.org/10.1016/j.ymben.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  34. Silva PC, Ceja-Navarro JA, Azevedo F et al (2021) A novel d-xylose isomerase from the gut of the wood feeding beetle Odontotaenius disjunctus efficiently expressed in Saccharomyces cerevisiae. Sci Rep. https://doi.org/10.1038/s41598-021-83937-z

    Article  PubMed  PubMed Central  Google Scholar 

  35. da Silva SS, Afschar AS (1994) Microbial production of xylitol from D-xylose using Candida tropicalis. Bioprocess Eng 11:129–134. https://doi.org/10.1007/BF00518734

    Article  Google Scholar 

  36. Waśko A, Kieliszek M, Targoński Z (2012) Purification and characterization of a proteinase from the probiotic lactobacillus rhamnosus OXY. Prep Biochem Biotechnol 42:476–488. https://doi.org/10.1080/10826068.2012.656869

    Article  CAS  PubMed  Google Scholar 

  37. Yokoyama S-I, Suzuki T, Kawai K et al (1995) Purification, characterization and structure analysis of NADPH-dependent d-xylose reductases from Candida tropicalis. J Ferment Bioeng 79:217–223. https://doi.org/10.1016/0922-338X(95)90606-Z

    Article  CAS  Google Scholar 

  38. Ikeuchi T, Azuma M, Kato J, Ooshima H (1999) Screening of microorganisms for xylitol production and fermentation behavior in high concentrations of xylose. Biomass Bioenerg 16:333–339. https://doi.org/10.1016/S0961-9534(99)00005-7

    Article  CAS  Google Scholar 

  39. Lamuela-Raventós RM (2017) Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In: Apak R, Capanoglu E, Shahidi F (eds) Measurement of antioxidant activity and capacity. John Wiley & Sons Ltd, Chichester, UK, pp 107–115

  40. Wei J, Yuan Q, Wang T, Wang L (2010) Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Front Chem Eng China 4:57–64. https://doi.org/10.1007/s11705-009-0295-1

    Article  CAS  Google Scholar 

  41. Nakano Y, Okawa K, Nisijima W, Okada M (2002) Regeneration of granular activated carbon using acetic acid solution as desorbing solvent for adsorbed trichloroethylene. J Jpn Soc Water Environ 25:619–621. https://doi.org/10.2965/jswe.25.619

    Article  CAS  Google Scholar 

  42. D28 Committee (2021) Test method for determination of iodine number of activated carbon. ASTM International

  43. Singh S, Kaur D, Yadav SK, Krishania M (2021) Process scale-up of an efficient acid-catalyzed steam pretreatment of rice straw for xylitol production by C. tropicalis MTCC 6192. Bioresour Technol 320:124422. https://doi.org/10.1016/j.biortech.2020.124422

  44. Louie TM, Louie K, DenHartog S et al (2021) Production of bio-xylitol from d-xylose by an engineered Pichia pastoris expressing a recombinant xylose reductase did not require any auxiliary substrate as electron donor. Microb Cell Fact 20:50. https://doi.org/10.1186/s12934-021-01534-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mussatto SI, Roberto IC (2005) Evaluation of nutrient supplementation to charcoal-treated and untreated rice straw hydrolysate for xylitol production by Candida guilliermondii. Braz Arch Biol Technol 48:497–502. https://doi.org/10.1590/S1516-89132005000300020

    Article  Google Scholar 

  46. Du C, Li Y, Zong H et al (2020) Production of bioethanol and xylitol from non-detoxified corn cob via a two-stage fermentation strategy. Biores Technol 310:123427. https://doi.org/10.1016/j.biortech.2020.123427

    Article  CAS  Google Scholar 

  47. Dhar KS, Wendisch VF, Nampoothiri KM (2016) Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. J Biotechnol 230:63–71. https://doi.org/10.1016/j.jbiotec.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Chen Z, Wang J et al (2021) Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor. Microb Cell Fact 20:105. https://doi.org/10.1186/s12934-021-01596-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dasgupta D, Junghare V, Nautiyal AK et al (2019) Xylitol production from lignocellulosic pentosans: a rational strain engineering approach toward a multiproduct biorefinery. J Agric Food Chem 67:1173–1186. https://doi.org/10.1021/acs.jafc.8b05509

    Article  CAS  PubMed  Google Scholar 

  50. Antunes FAF, Thomé LC, Santos JC et al (2021) Multi-scale study of the integrated use of the carbohydrate fractions of sugarcane bagasse for ethanol and xylitol production. Renewable Energy 163:1343–1355. https://doi.org/10.1016/j.renene.2020.08.020

    Article  CAS  Google Scholar 

  51. Goli JK, Hameeda B (2021) Production of xylitol and ethanol from acid and enzymatic hydrolysates of Typha latifolia by Candida tropicalis JFH5 and Saccharomyces cerevisiae VS3. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01868-1

    Article  Google Scholar 

  52. Shalsh DF, Nagimm DK, Alrheem MA, Alrheem SA (2021) Batch fermentation and simultaneous saccharification and fermentation (SSF) processes by meyerozyma guilliermondii strain F22 and Saccharomyces cerecvisae for xylitol and bioethanol co-production. Al-Qadisiyah J Pure Sci 26:80–94. https://doi.org/10.29350/qjps.2021.26.4.1347

  53. Shankar K, Kulkarni NS, Sajjanshetty R et al (2020) Co-production of xylitol and ethanol by the fermentation of the lignocellulosic hydrolysates of banana and water hyacinth leaves by individual yeast strains. Ind Crops Prod 155:112809. https://doi.org/10.1016/j.indcrop.2020.112809

    Article  CAS  Google Scholar 

  54. Stoklosa RJ, Nghiem NP, Latona RJ (2019) Xylose-enriched ethanol fermentation stillage from sweet sorghum for xylitol and astaxanthin production. Fermentation 5:84. https://doi.org/10.3390/fermentation5040084

    Article  CAS  Google Scholar 

  55. Luo J, Wang X, Xia B, Wu J (2010) Preparation and characterization of quaternized chitosan under microwave irradiation. J Macromol Sci A Pure Appl Chem 47:952–956. https://doi.org/10.1080/10601325.2010.501310

    Article  CAS  Google Scholar 

  56. Rafiqul ISM, Sakinah AMM, Karim MR (2014) Production of xylose from meranti wood sawdust by dilute acid hydrolysis. Appl Biochem Biotechnol 174:542–555. https://doi.org/10.1007/s12010-014-1059-z

    Article  CAS  PubMed  Google Scholar 

  57. Queiroz SS, Jofre FM, Mussatto SI, Felipe das MGA (2022) Scaling up xylitol bioproduction: challenges to achieve a profitable bioprocess. Renew Sustain Energy Rev 154:111789. https://doi.org/10.1016/j.rser.2021.111789

    Article  CAS  Google Scholar 

  58. Swart LJ, Petersen AM, Bedzo OK, Görgens JF (2021) Techno-economic analysis of the valorization of brewers spent grains: production of xylitol and xylo-oligosaccharides. J Chem Technol Biotechnol 96:1632–1644. https://doi.org/10.1002/jctb.6683

    Article  CAS  Google Scholar 

  59. Egirani D, Latif MT, Wessey N et al (2021) Preparation and characterization of powdered and granular activated carbon from Palmae biomass for mercury removal. Appl Water Sci 11:10. https://doi.org/10.1007/s13201-020-01343-8

    Article  CAS  Google Scholar 

  60. Ma Y, Zhang X, Wen J (2021) Study on the harm of waste activated carbon and novel regeneration technology of it. IOP Conf Ser Earth Environ Sci 769:022047. https://doi.org/10.1088/1755-1315/769/2/022047

    Article  Google Scholar 

  61. Özüdoğru HMR, Nieder-Heitmann M, Haigh KF, Görgens JF (2019) Techno-economic analysis of product biorefineries utilizing sugarcane lignocelluloses: Xylitol, citric acid and glutamic acid scenarios annexed to sugar mills with electricity co-production. Ind Crops Prod 133:259–268. https://doi.org/10.1016/j.indcrop.2019.03.015

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

VA and AKB: conceptualization, methodology, investigation, and writing—review and editing; SM and S: investigation; RKR and VS: data validation and visualization.

Corresponding authors

Correspondence to Vishal Ahuja or Arvind Kumar Bhatt.

Ethics declarations

Conflict of interest

This study following Compliance with Ethical Standards; this study does not involve human participants, animals, and potential conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

All authors agreed to participate in the publication of this manuscript.

Consent to publish

All authors read and agreed to the publication of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 337 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahuja, V., Bhatt, A.K., Mehta, S. et al. Xylitol production by Pseudomonas gessardii VXlt-16 from sugarcane bagasse hydrolysate and cost analysis. Bioprocess Biosyst Eng 45, 1019–1031 (2022). https://doi.org/10.1007/s00449-022-02721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02721-z

Keywords

Navigation