Skip to main content
Log in

Exchange repulsion between effective fragment potentials and ab initio molecules

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The exchange repulsion energy and the Fock operator for systems that contain both effective fragment potentials and ab initio molecules have been derived, implemented, and tested on six mixed dimers of common solvent molecules. The implementation requires a balance between accuracy and computational efficiency. The gradient of the exchange repulsion has also been derived. Computational timings and the current challenges facing the implementation of the gradient are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Garmer D, Basch H, Cohen D (1996) J Chem Phys 105:1968

    Article  CAS  Google Scholar 

  2. Schmidt MW, Baldridge KK, Boatz JA, Jensen JH, Koseki S, Matsunaga N, Gordon MS, Ngugen KA, Su S, Windus TL, Elbert ST, Montgomery J, Dupuis M (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  3. Schmidt MW, Gordon MS (2005) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, pp 1167–1189

    Google Scholar 

  4. Gordon MS, Freitag MA, Bandyopadhyay P, Jensen JH, Kairys V, Stevens WJ (2001) J Phys Chem A 105:293

    Article  CAS  Google Scholar 

  5. Adamovic I, Gordon MS (2005) Mol Phys 103:379

    Article  CAS  Google Scholar 

  6. Li H, Gordon MS, Jensen JH (2006) J Chem Phys 124:214108

    Article  Google Scholar 

  7. Jensen JH, Gordon MS (1996) Mol Phys 89:1313

    Article  CAS  Google Scholar 

  8. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325

    Article  CAS  Google Scholar 

  9. Stevens WJ, Fink WH (1987) Chem Phys Lett 139:15

    Article  CAS  Google Scholar 

  10. Gordon MS, Slipchenko L, Li H, Jensen JH (2007) Ann Rep Comput Chem 3:177

    Article  CAS  Google Scholar 

  11. Slipchenko L, Gordon MS (2007) J Comput Chem 28:276

    Article  CAS  Google Scholar 

  12. Smith T, Slipchenko LV, Gordon MS (2008) J Phys Chem A 112:5286

    Article  CAS  Google Scholar 

  13. Slipchenko LV, Gordon MS (2009) J Phys Chem A 113:2092

    Article  CAS  Google Scholar 

  14. Slipchenko LV, Gordon MS (2009) Mol Phys 107:999

    Article  CAS  Google Scholar 

  15. Jensen JH (2001) J Chem Phys 114:8775

    Article  CAS  Google Scholar 

  16. Rintelman JM (2004) Quantum chemistry, an eclectic mix: from silicon carbide to size consistency. Ph.D. thesis, Iowa State University, Ames, IA

  17. Jensen JH (1996) J Chem Phys 104:7795

    Article  CAS  Google Scholar 

  18. Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover, Mineola, pp 410–416

    Google Scholar 

  19. Jensen JH, Gordon MS (1998) J Chem Phys 108:4772

    Article  CAS  Google Scholar 

  20. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  21. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  22. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

    Article  CAS  Google Scholar 

  23. Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th edn. Dover, New York, p 11

    Google Scholar 

  24. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764

    Article  CAS  Google Scholar 

  25. Pople JA, Santry DP, Segal GA (1965) J Chem Phys 43:129

    Article  Google Scholar 

  26. Mulliken RS (1949) J Chem Phys 46:500 and 521

  27. Ruedenberg K (1951) J Chem Phys 19:1459

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Chemistry Division, Basic Energy Sciences, Department of Energy, administered by the Ames Laboratory. Special thanks is given to Hui Li for numerous and insightful discussions. The authors also thank Dr. Michael Schmidt and Professor Timothy Dudley for helping with various details of the implementation into GAMESS. JHJ gratefully acknowledges a Skou Fellowship from the Danish Research Agency (Forskningsrådet for Natur og Univers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Gordon.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemp, D.D., Rintelman, J.M., Gordon, M.S. et al. Exchange repulsion between effective fragment potentials and ab initio molecules. Theor Chem Acc 125, 481–491 (2010). https://doi.org/10.1007/s00214-009-0660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0660-7

Keywords

Navigation