Skip to main content

Advertisement

Log in

Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The East African highlands are a region of important common bean production and high varietal diversity for the crop. The objective of this study was to uncover the diversity and population structure of 192 landraces from Ethiopia and Kenya together with four genepool control genotypes using morphological phenotyping and microsatellite marker genotyping. The germplasm represented different common bean production ecologies and seed types common in these countries. The landraces showed considerable diversity that corresponded well to the two recognized genepools (Andean and Mesoamerican) with little introgression between these groups. Mesoamerican genotypes were predominant in Ethiopia while Andean genotypes were predominant in Kenya. Within each country, landraces from different collection sites were clustered together indicating potential gene flow between regions within Kenya or within Ethiopia. Across countries, landraces from the same country of origin tended to cluster together indicating distinct germplasm at the national level and limited gene flow between the two countries highlighting divided social networks within the regions and a weak trans-national bean seed exchange especially for landrace varieties. One exception to this may be the case of small red-seeded beans where informal cross-border grain trade occurs. We also observed that genetic divergence was slightly higher for the Ethiopian landraces compared to Kenyan landraces and that Mesoamerican genotypes were more diverse than the Andean genotypes. Common beans in eastern Africa are often cultivated in marginal, risk-prone farming systems and the observed landrace diversity should provide valuable alleles for adaptation to stressful environments in future breeding programs in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afanador L, Hadley S, Kelly JD (1993) Adoption of a mini-prep DNA extraction method for RAPD marker analysis in common bean (Phaseolus vulgaris L.). Bean Improv Coop 36:10–11

    Google Scholar 

  • Allen DJ, Edje OT (1990) Common bean in Africa farming system. In: Smithson JB (ed) 1990 Progress in improvement of common bean in Eastern and Southern Africa. Bean Research, vol 5. CIAT Africa Workshop Series No 20, p 32

  • Becerra VL, Gepts P (1994) RFLP diversity of common bean (Phaseolus vulgaris) in its centers of origin. Genome 37:256–263

    Article  Google Scholar 

  • Beebe S, Skroch P, Tohme J, Duque MC, Pedraza F, Nienhuis J (2000) Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Sci 40:264–273

    Article  Google Scholar 

  • Beebe S, Rengifo J, Gaitan-Solis E, Duque MC, Tohme J (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862

    Google Scholar 

  • Blair MW, Pedraza F, Buendía H, Gaitán E, Beebe S, Gepts P, Tohme J (2003) Development of a genome wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe S (2006) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Díaz JM, Hidalgo R, Díaz LM (2007) Microsatellite characterization of Andean races of common bean (Phaseolus vulgaris L.). Theor Appl Genet 116:29–43

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Díaz LM, Buendía HF, Duque MC (2009) Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet. doi:10.1007/s00122-009-1064-8

    Google Scholar 

  • Broughton WJ, Hernandez G, Blair MW, Beebe SE, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • CIAT (1987) Standard system for the evaluation of bean germplasm. Van Schoohoven A, Pastor C (Compilers). CIAT, Cali

    Google Scholar 

  • CIAT (2005) Utilization of bean genetic diversity in Africa. Highlights of CIAT in Africa, no. 21. CIAT, Cali. http://www.ciat.cgiar.org

  • Díaz LM, Blair MW (2006) Race structure within the Mesoamerican genepool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers. Theor Appl Genet 114:143–154

    Article  PubMed  Google Scholar 

  • Durán LA, Blair MW, Giraldo MC, Macchiavelli R, Prophete E, Nin JC, Beaver JS (2005) Morphological and molecular characterization of common bean landraces and cultivars from the Caribbean. Crop Sci 45:1320–1328

    Google Scholar 

  • Gaitán E, Duque MC, Edwards K, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris L.): isolation, characterization, and cross-species amplification in Phaseolus spp. Crop Sci 42:2128–2136

    Article  Google Scholar 

  • Gao H, Williamson S, Bustamante CD (2007) An MCMC approach for Joint inference of population structure and inbreeding rates from multi-locus genotype Data. Genetics. http://cbsuapps.tc.cornell.edu/InStruct.aspx (online)

  • Gentry HS (1969) Origin of the common bean. Phaseolus vulgaris. Econ Bot 23:55–69

    Google Scholar 

  • Gepts P, Debouck D (1991) Origin, domestication and evolution of the common beans (Phaseolus vulgaris L.). In: Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, Wallingford, pp 7–54

    Google Scholar 

  • Gepts P, Osborn T, Rashka K, Bliss F (1986) Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris) evidence for multiple centers of domestication. Econ Bot 40:451–468

    CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (Version 2.9.3). http://www.unil.ch/popgen/softwares/fstat.html

  • Greenway P (1945) The origin of some East Africa food plants. East Afr Agric For J 10:177–180

    Google Scholar 

  • Hillocks RJ, Madata CS, Chirwa R, Minja EM, Msolla S (2006) Phaseolus bean improvement in Tanzania, 1959–2005. Euphytica. doi:10.1007/s10681-006-9112-9

  • Islam FM, Basford KE, Reden RJ, Gonzalez AV, Kroonenberg PM, Beebe SE (2002) Genetic variability in cultivated common bean beyond the two major genepools. Genet Resour Crop Evol 49:271–283

    Article  Google Scholar 

  • Islam FM, Beebe S, Muñoz M, Tohme J, Redden RJ, Basford KE (2004) Using molecular markers to assess the effect of introgression on quantitative attributes of common bean in the Andean genepool. Theor Appl Genet 108:243–252

    Article  PubMed  CAS  Google Scholar 

  • Koenig R, Gepts P (1989) Allozyme diversity in wild Phaseolus vulgaris: further evidence for two mayor centers of genetic diversity. Theor Appl Genet 78:809–817

    Article  Google Scholar 

  • Martin GB, Adams MW (1987) Landraces of Phaseolus vulgaris (Fabaceae) in northern Malawi. II. Generation and maintenance of variability. Econ Bot 41:204–215

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2007) GENALEX 6.1: genetic analysis in Excel. Population genetic software for teaching and research. Australian National University, Canberra. Available via http://www.anu.edu.au/BoZo/GenAlEx

  • Peakall R, Smouse PE, Huff DR (1995) Evolutionary implications of allozyme and RAPD variation in diploid populations of buffalograss Buchloe dactyloides. Mol Ecol 4:135–147

    Article  CAS  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006). DARwin software. Available from http://www.darwin.cirad.fr/darwin

  • Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Enfield Science Publishers, Montpellier, pp 43–76

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Rodiño AP, Santalla M, De Ron AM, Singh SP (2003) A core collection of common bean from the Iberian Peninsula. Euphytica 131:165–175

    Article  Google Scholar 

  • Rodiño AP, Santalla M, González MA, de Ron AM, Singh SP (2006) Novel genetic variation in common bean from the Iberian Peninsula. Crop Sci 46:2540–2546

    Article  CAS  Google Scholar 

  • Rohlf F (2002) NTSYS pc. Numerical Taxonomy System Exeter Publishing, Setauket

    Google Scholar 

  • Rosenberg NA (2002) Distruct: a program for the graphical display of structure results. Available from http://www.cmb.usc.edu/»noahr/distruct

  • SAS Institute (2003) SAS/STAT Users guide 9.1.3. SAS Institute, Cary

    Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991a) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396

    Google Scholar 

  • Singh SP, Molina A, Urrea C, Gepts P (1991b) Genetic diversity in cultivated Phaseolus vulgaris. II. Marker-based analysis of morphological and agronomic traits. Crop Sci 31:23–29

    Article  CAS  Google Scholar 

  • Singh SP, Nodari R, Gepts P (1991c) Genetic diversity in cultivated common bean: I. Allozymes. Crop Sci 31:19–23

    Article  CAS  Google Scholar 

  • Sperling L (2001) The effect of the civil war on Rwanda’s bean seed systems and unusual bean diversity. Biodivers Conserv 10:989–1009

    Article  Google Scholar 

  • Van Rheenen HA (1979) Diversity of food beans in Kenya. Econ Bot 33(4):448–454

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wortmann CS, Kirkby RA, Eledu CA, Allen DJ (1998) Atlas of common bean (Phaseolus vulgalis L.) production in Africa. CIAT Pan-African Bean Research Alliance, vol 133

  • Yeh FY, Boyle R, Ye T, Mao Z (1997) POPGENE, the user-friendly shareware for population genetic analysis, version 1.31. Molecular Biology and Biotechnology Centre, University of Alberta, Alberta

    Google Scholar 

  • Yu K, Park J, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet 117:629–640

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Genetic Resource Unit and Bean Project of CIAT as well as the Institute for Genomic Diversity at Cornell University for germplasm and assistance rendered during phenotyping and genotyping. The Generation challenge program (GCP) is gratefully acknowledged for funding associated with this study. We also thank the Cornell Computational Biology Service Unit for assistance in data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Blair.

Additional information

Communicated by F. Muehlbauer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 429 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asfaw, A., Blair, M.W. & Almekinders, C. Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands. Theor Appl Genet 120, 1–12 (2009). https://doi.org/10.1007/s00122-009-1154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1154-7

Keywords

Navigation