Skip to main content

Advertisement

Log in

Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 2 (FGF2) is involved in many physiological and pathological processes. Fgf2 deregulation contributes to the acquisition of malignant features of melanoma and other cancers. FGF2 is an alternative translation product expressed as five isoforms, a low-molecular-weight (18 KDa) and four high-molecular-weight (22, 22.5, 24, 34 KDa) isoforms, with different subcellular distributions. An internal ribosomal entry site (IRES) in its mRNA controls the translation of all the isoforms with the exception for the cap-dependent 34 KDa. The 18-KDa isoform has been extensively studied, while very few is known about the roles of high molecular weight isoforms. FGF2 is known to promote melanoma development and progression. To disclose the differential contribution of FGF2 isoforms in melanoma, we forced the expression of IRES-dependent low-molecular-weight (LMW, 18 KDa) and high-molecular-weight (HMW, 22, 22.5, 24 KDa) isoforms in a human metastatic melanoma cell line. This comparative study highlights that, while LMW isoform confers stem-like features to melanoma cells and promotes angiogenesis, HMW isoforms induce higher migratory ability and contribute to tumor perfusion by promoting vasculogenic mimicry (VM) when endothelial cell-driven angiogenesis is lacking. To conclude, FGF2 isoforms mainly behave in specific, antithetical manners, but can cooperate in different steps of tumor progression, providing melanoma cells with major malignant features.

Key message

  • FGF2 is an alternative translation product expressed as different isoforms termed LMW and HMW.

  • FGF2 is involved in melanoma development and progression.

  • HMW FGF2 isoforms enhance in vitro motility of melanoma cells.

  • LMW FGF2 confers stem-like features and increases in vivo metastasization.

  • LMW FGF2 promotes angiogenesis while HMW FGF2 induces vasculogenic mimicry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. MacKie RM, Hauschild A, Eggermont AM (2009) Epidemiology of invasive cutaneous melanoma. Ann Oncol Suppl 6:vi1–vi7

    Google Scholar 

  2. Chlebova K, Bryja V, Dvorak P, Kozubik A, Wilcox WR, Krejci P (2009) High molecular weight FGF2: the biology of a nuclear growth factor. Cell Mol Life Sci 66(2):225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mokrejs M, Masek T, Vopálensky V, Hlubucek P, Delbos P, Pospísek M (2010) IRESite—a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Res 38:D131–D136

    Article  CAS  PubMed  Google Scholar 

  4. Bornes S, Prado-Lourenco L, Bastide A, Zanibellato C, Iacovoni JS, Lacazette E, Prats AC, Touriol C, Prats H (2007) Translational induction of VEGF internal ribosome entry site elements during the early response to ischemic stress. Circ Res 100(3):305–308

    Article  CAS  PubMed  Google Scholar 

  5. Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, Prats AC (1999) A new 34- kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol 19(1):505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gonzalez-Herrera IG, Prado-Lourenco L, Teshima-Kondo S, Kondo K, Cabon F, Arnal JF, Bayard F, Prats AC (2006) IRES-dependent regulation of FGF-2 mRNA translation in pathophysiological conditions in the mouse. Biochem Soc Trans 34(Pt 1):17–21

    Article  CAS  PubMed  Google Scholar 

  7. Sørensen V, Nilsen T, Wiedłocha A (2006) Functional diversity of FGF-2 isoforms by intracellular sorting. BioEssays 28(5):504–514

    Article  PubMed  Google Scholar 

  8. Galy B, Maret A, Prats AC, Prats H (1999) Cell transformation results in the loss of the density-dependent translational regulation of the expression of fibroblast growth factor 2 isoforms. Cancer Res 59(1):165–171

    CAS  PubMed  Google Scholar 

  9. Peppicelli S, Bianchini F, Torre E, Calorini L (2014) Contribution of acidic melanoma cells undergoing epithelial-to-mesenchymal transition to aggressiveness of non-acidic melanoma cells. Clin Exp Metastasis 31:423–433

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt JM, Panzilius E, Bartsch HS, et al. (2015) Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation. Cell Rep 10(2):131–139

    Article  CAS  PubMed  Google Scholar 

  11. Arese M, Chen Y, Florkiewicz RZ, Gualandris A, Shen B, Rifkin DB (1999) Nuclear activities of basic fibroblast growth factor: potentiation of low-serum growth mediated by natural or chimeric nuclear localization signals. Mol Biol Cell 10(5):1429–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W, Lomas C, Mendiola M, Hardisson D, Eccles SA (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 10:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vinci M, Box C, Zimmermann M, Eccles SA (2013) Tumor spheroid-based migration assays for evaluation of therapeutic agents. Methods Mol Biol 986:253–266

    Article  CAS  PubMed  Google Scholar 

  14. Zimmermann M, Box C, Eccles SA (2013) Two-dimensional vs. three-dimensional in vitro tumor migration and invasion assays. Methods Mol Biol 986:227–252

    Article  CAS  PubMed  Google Scholar 

  15. Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, Taichman RS, Pienta KJ, Wang J (2010) CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 29(4):709–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chiarugi P, Giannoni E (2008) Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol 76(11):1352–1364

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  18. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Borst P (2012) Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol 2(5):120066

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wouters J, Stas M, Gremeaux L, Govaere O, Van den Broeck A, Maes H, Agostinis P, Roskams T, van den Oord JJ, Vankelecom H (2013) The human melanoma side population displays molecular and functional characteristics of enriched chemoresistance and tumorigenesis. PLoS One 8(10):e76550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li S, Yue D, Chen X, Wang L, Li J, Ping Y, Gao Q, Wang D, Zhang T, Li F, Yang L, Huang L, Zhang Y (2015) Epigenetic regulation of CD271, a potential cancer stem cell marker associated with chemoresistance and metastatic capacity. Oncol Rep 33(1):425–432

    CAS  PubMed  Google Scholar 

  22. Yang H, Li XD, Zhou Y, Ban X, Zeng TT, Li L, Zhang BZ, Yun J, Xie D, Guan XY, Li Y (2015) Stemness and chemotherapeutic drug resistance induced by EIF5A2 overexpression in esophageal squamous cell carcinoma. Oncotarget 6(28):26079–26089

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155(3):739–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV, Hendrix MJ (2012) Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am J Pathol 181(4):1115–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seftor EA, Meltzer PS, Schatteman GC, Gruman LM, Hess AR, Kirschmann DA, Seftor RE, Hendrix MJ (2002) Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit Rev Oncol Hematol 44(1):17–27

    Article  PubMed  Google Scholar 

  26. Fan YZ, Sun W (2010) Molecular regulation of vasculogenic mimicry in tumors and potential tumor-target therapy. World J Gastrointest Surg 2(4):117–127

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kirschmann DA, Seftor EA, Hardy KM, Seftor RE, Hendrix MJ (2012) Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin Cancer Res 18(10):2726–2732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fontijn D, Duyndam MC, Beliën JA, Gallegoz Ruiz MI, Pinedo HM, Boven E (2007) The 18 kDa isoform of basic fibroblast growth factor is sufficient to stimulate human melanoma growth and angiogenesis. Melanoma Res 17(3):155–168

    Article  CAS  PubMed  Google Scholar 

  29. van der Schaft DW, Seftor RE, Seftor EA, Hess AR, Gruman LM, Kirschmann DA, Yokoyama Y, Griffioen AW, Hendrix MJ (2004) Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Natl Cancer Inst 96(19):1473–1477

    Article  PubMed  Google Scholar 

  30. Fan YL, Zheng M, Tang YL, Liang XH (2013) A new perspective of vasculogenic mimicry: EMT and cancer stem cells (review). Oncol Lett 6(5):1174–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Redondo P, Lloret P, Idoate M, Inoges S (2005) Expression and serum levels of MMP-2 and MMP-9 during human melanoma progression. Clin Exp Dermatol 30(5):541–545

    Article  CAS  PubMed  Google Scholar 

  32. Giricz O, Lauer JL, Fields GB (2010) Variability in melanoma metalloproteinase expression profiling. J Biomol Tech 21(4):194–204

    PubMed  PubMed Central  Google Scholar 

  33. Väisänen AH, Kallioinen M, Turpeenniemi-Hujanen T (2008) Comparison of the prognostic value of matrix metalloproteinases 2 and 9 in cutaneous melanoma. Hum Pathol 39(3):377–385

    Article  PubMed  Google Scholar 

  34. Vandekeere S, Dewerchin M, Carmeliet P (2015) Angiogenesis revisited: an overlooked role of endothelial cell metabolism in vessel sprouting. Microcirculation 22(7):509–517

    Article  PubMed  Google Scholar 

  35. Herrera VL, Decano JL, Tan GA, Moran AM, Pasion KA, Matsubara Y, Ruiz-Opazo N (2014) DEspR roles in tumor vasculo-angiogenesis, invasiveness, CSC-survival and anoikis resistance: a ‘common receptor coordinator’ paradigm. PLoS One 9(1):e85821

    Article  PubMed  PubMed Central  Google Scholar 

  36. Montuori N, Ragno P (2014) Role of uPA/uPAR in the modulation of angiogenesis. Chem Immunol Allergy 99:105–122

    Article  CAS  PubMed  Google Scholar 

  37. Ribatti D, Leali D, Vacca A, Giuliani R, Gualandris A, Roncali L, Nolli ML, Presta M (1999) In vivo angiogenic activity of urokinase: role of endogenous fibroblast growth factor-2. J Cell Sci 112(Pt 23):4213–4221

    CAS  PubMed  Google Scholar 

  38. Bifulco K, Longanesi-Cattani I, Gala M, DI Carluccio G, Masucci MT, Pavone V, Lista L, Arra C, Stoppelli MP, Carriero MV (2010) The soluble form of urokinase receptor promotes angiogenesis through its Ser88-Arg-Ser-Arg-Tyr92 chemotactic sequence. J Thromb Haemost 8(12):2789–2799

    Article  CAS  PubMed  Google Scholar 

  39. Yang F, Strand DW, Rowley DR (2008) Fibroblast growth factor-2 mediates transforming growth factor-beta action in prostate cancer reactive stroma. Oncogene 27(4):450–459

    Article  CAS  PubMed  Google Scholar 

  40. Ding L, Doñate F, Parry GC, Guan X, Maher P, Levin EG (2002) Inhibition of cell migration and angiogenesis by the amino-terminal fragment of 24kD basic fibroblast growth factor. J Biol Chem 277(34):31056–31061

    Article  CAS  PubMed  Google Scholar 

  41. Volpert OV, Zaichuk T, Zhou W, Reiher F, Ferguson TA, Stuart PM, Amin M, Bouck NP (2002) Inducer-stimulated fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 8(4):349–357

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe K, Hasegawa Y, Yamashita H, Shimizu K, Ding Y, Abe M, Ohta H, Imagawa K, Hojo K, Maki H, Sonoda H, Sato Y (2004) Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J Clin Invest 114(7):898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen J, Yang X, Xiao WH, Hackett SF, Sato Y, Campochiaro PA (2006) Vasohibin is up-regulated by VEGF in the retina and suppresses VEGF receptor 2 and retinal neovascularization. FASEB J 20(6):723–725

    CAS  PubMed  Google Scholar 

  44. Woolard J, Wang WY, Bevan HS, et al. (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64(21):7822–7835

    Article  CAS  PubMed  Google Scholar 

  45. Zhang S, Guo H, Zhang D, Zhang W, Zhao X, Ren Z, Sun B (2006) Microcirculation patterns in different stages of melanoma growth. Oncol Rep 15(1):15–20

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support: Associazione Italiana Ricerca sul Cancro (AIRC), grant IG 2013 N. 14266.

We thank Prof. Daniele Bani, Dr. Laura Calosi, Dr. Stefano Catarinicchia, for histological analysis and Mr. Marco Cutrì for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura Papucci or Nicola Schiavone.

Ethics declarations

All procedures involving animals were performed in accordance with national guidelines and approved by the ethical committee of Animal Welfare Office of Italian Work Ministry (DECRETO N° 53/2014- B, 17th Feb. 2014).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreucci, E., Bianchini, F., Biagioni, A. et al. Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma. J Mol Med 95, 97–108 (2017). https://doi.org/10.1007/s00109-016-1463-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1463-7

Keywords

Navigation