Skip to main content
Log in

On Complex-valued 2D Eikonals. Part Four: Continuation Past a Caustic

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

Theories of monochromatic high-frequency electromagnetic fields have been designed by Felsen, Kravtsov, Ludwig and others with a view to portraying features that are ignored by geometrical optics. These theories have recourse to eikonals that encode information on both phase and amplitude — in other words, are complex-valued. The following mathematical principle is ultimately behind the scenes: any geometric optical eikonal, which conventional rays engender in some light region, can be consistently continued in the shadow region beyond the relevant caustic, provided an alternative eikonal, endowed with a non-zero imaginary part, comes on stage.

In the present paper we explore such a principle in dimension 2. We investigate a partial differential system that governs the real and the imaginary parts of complex-valued two-dimensional eikonals, and an initial value problem germane to it. In physical terms, the problem in hand amounts to detecting waves that rise beside, but on the dark side of, a given caustic. In mathematical terms, such a problem shows two main peculiarities: on the one hand, degeneracy near the initial curve; on the other hand, ill-posedness in the sense of Hadamard.We benefit from using a number of technical devices: hodograph transforms, artificial viscosity, and a suitable discretization. Approximate differentiation and a parody of the quasi-reversibility method are also involved.We offer an algorithm that restrains instability and produces effective approximate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abdukarimov, A problem of analytic continuation from a discrete set for functions of complex variables. Approximate solution methods and questions of the well-posedness of inverse problems, 5–8, Vychisl. Tsentr, Novosibirsk, 1981.

  2. Ahn S., Choi U.J., Ramm A.G. (2006) A scheme for stable numerical differentiation. J. Comput. Appl. Math. 186: 325–334

    MATH  MathSciNet  Google Scholar 

  3. Alessandrini G. (1980) On differentiation of approximately given functions. Applicable Analysis 11: 45–59

    MATH  MathSciNet  Google Scholar 

  4. Alessandrini G. (1980) An extrapolation problem for harmonic functions. Boll. UMI 17: 860–875

    MATH  MathSciNet  Google Scholar 

  5. Alifanov O.M. (1984) Methods of solving ill-posed problems. Translated from the Russian original in J. Engrg. Phys. 45: 1237–1245

    MathSciNet  Google Scholar 

  6. Ames K.A., Isakov V. (1991) An explicit stability estimate for an ill-posed Cauchy problem for the wave equation. J. Math. Anal. Appl. 156: 597–610

    MATH  MathSciNet  Google Scholar 

  7. Anderssen R.S., Bloomfield P. (1973/74) Numerical differentiation procedures for non-exact data. Numer. Math. 22: 157–182

    MathSciNet  Google Scholar 

  8. Anderssen R.S., Bloomfield P. (1974) A time series approach to numerical differentiation. Technometrics 16: 69–75

    MATH  MathSciNet  Google Scholar 

  9. Anderssen R.S., de Hoog F.R. (1984) Finite difference methods for the numerical differentiation of non-exact data. Computing 33: 259–267

    MATH  MathSciNet  Google Scholar 

  10. D.D. Ang & D.D. Trong, A Cauchy problem for elliptic equations: quasireversibility and error estimates. Vietnam J. Math. 32 (2004), Special Issue, 9–17.

    Google Scholar 

  11. D.D. Ang & D.D. Trong & M. Yamamoto, A Cauchy like problem in plane elasticity:regularization by quasi-reversibility with error estimates. Vietnam J. Math. 32 (2004), no.2, 197–208.

    Google Scholar 

  12. Aripov M.M., Khaidarov M. (1986) A Cauchy problem for a nonlinear heat equation in an inhomogeneous medium (in Russian). Dokl. Akad. Nauk SSSR 2: 11–13

    MathSciNet  Google Scholar 

  13. Baart M.I. (1981) Computational experience with the spectral smoothing method for differentiating noisy data. J. Comput. Phys. 42: 141–151

    MATH  MathSciNet  Google Scholar 

  14. V.M. Babich & V.S. Buldyrev, Short-wavelength diffraction theory. Springer-Verlag, 1991.

  15. A.B. Bakushinskii & A.V. Goncharskii, Ill-posed problems: theory and applications. Kluwer, 1995.

  16. Bakushinskii A.B., Yu M., Kokurin S.K. (2008) difference solution method for ill-posed Cauchy problems in a Hilbert space. J. Inverse Ill-Posed Problems 16: 553–565

    Google Scholar 

  17. J.B. Bell, The noncharacteristic Cauchy problem for a class of equations with time dependence. I: problems in one space dimension. II: multidimensional problems. SIAM J. Math. Anal. 12 (1981), pages 759–777 and 778–797.

  18. Berntsson F., Eldén L. (2001) Numerical solution of a Cauchy problem for the Laplace equation. Inverse Problems 17: 839–854

    MATH  MathSciNet  Google Scholar 

  19. M. Bertero, Regularization methods for linear inverse problems. In: Inverse problems (G. Talenti editor), Lecture Notes in Math. vol. 1225, Springer 1986.

  20. Bertero M. (1989) Linear inverse and ill-posed problems. Advances in Electronics and Electron Physics 75: 2–120

    Google Scholar 

  21. M. Bertero, The use of a priori information in the solution of ill-posed problems. Pages 19–27 in Partial differential equations and applications (P. Marcellini & G. Talenti & E. Vesentini editors), Lecture Notes in Pure and Appl. Math. 177, Dekker, 1996.

  22. M. Bertero & C. DeMol & G.A. Viano, The stability of inverse problems. Pages 161–214 in Inverse Scattering Problems in Optics (H. Baltes editor), Topics in Current Physics, vol.20, Springer, 1980.

  23. Bertero M., Viano G.A. (1965) On the numerical analytic continuation of the proton electromagnetic form factors. Nuovo Cimento 39: 1915–1920

    MathSciNet  Google Scholar 

  24. Bertero M., Viano G.A. (1978) On probabilistic methods for the solution of improperly posed problems. Boll. UMI B (5) 15: 483–508

    MATH  MathSciNet  Google Scholar 

  25. Bogdanova N., Kupenova T. (1979) A numerical method for analytic continuation of holomorphic functions outside the real axis. Godishnik Vyss. Ucebn. Zaved. Tekh. Fiz. 16: 91–96

    MathSciNet  Google Scholar 

  26. D. Bouche & F. Molinet, Méthodes asymptotiques en Électromagnètisme. Springer-Verlag, 1994.

  27. Bourgeois L. (2005) A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation. Inverse Problems 21: 1087–1104

    MATH  MathSciNet  Google Scholar 

  28. Bourgeois L. (2006) Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace’s equation. Inverse Problems 22: 413–430

    MATH  MathSciNet  Google Scholar 

  29. N. Boussetila & F. Rebbani, Optimal regularization methods for ill-posed problems. Electron. J. Differential Equations 147 (2006) 15 pp.

    Google Scholar 

  30. Bressan A. (2003) An ill-posed Cauchy problem for a hyperbolic system in two space dimensions. Rend. Sem. Mat. Univ. Padova 110: 103–117

    MATH  MathSciNet  Google Scholar 

  31. W.L. Briggs & V.E. Henson, The DFT. SIAM, 1995.

  32. Cannon J. (1964) A Cauchy problem for the heat equation. Ann. Mat. Pura Appl. 66: 155–165

    MATH  MathSciNet  Google Scholar 

  33. Cannon J., Douglas J. (1967) The Cauchy problem for the heat equation. SIAM J. Numer. Anal. 4: 317–336

    MATH  MathSciNet  Google Scholar 

  34. Cannon J., Ewing R.E. (1976) A direct numerical procedure for the Cauchy problem for the heat equation. J. Math. Anal. Appl. 56: 7–17

    MATH  MathSciNet  Google Scholar 

  35. Cannon J.R., Miller K. (1965) Some problems in numerical analytic continuation. SIAM J. Numer. Anal. 2: 87–98

    MathSciNet  Google Scholar 

  36. A.S. Carasso, A stable marching scheme for an ill-posed initial value problem. Pages 11–35 in Improperly posed problems and their numerical treatment (Oberwolfach, 1982), Internat. Schriftenreihe Numer. Math. 63, Birkhuser, 1983.

  37. Chapman S.J., Lawry J.M.H., Ockendon J.R., Tew R.H. (1999) On the theory of complex rays. SIAM Review 41: 417–509

    MATH  MathSciNet  Google Scholar 

  38. Cheng J., Jia X.Z., Wang Y.B. (2007) Numerical differentiation and its applications. Inverse Probl. Sci. Eng. 15: 339–357

    MATH  MathSciNet  Google Scholar 

  39. Choudhary S., Felsen L.B. (1973) Asymptotic theory for inhomogeneous waves, IEEE. Transactions on Antennas and Propagation 21: 827–842

    Google Scholar 

  40. S. Choudhary & L.B. Felsen, Analysis of Gaussian beam propagation and diffraction by inhomogeneous wave tracking. Proceedings of IEEE 62 (1974) 1530,1541.

    Google Scholar 

  41. Ciulli S., Spearman T.D. (1982) Analytic continuation from data points with unequal errors. J. Math. Phys. 23: 1752–1764

    MATH  MathSciNet  Google Scholar 

  42. Ciulli S., Spearman T.D. (1996) Analytic continuation from empirical data: a direct approach to the stabilization problem. J. Math. Phys. 37: 933–941

    MATH  MathSciNet  Google Scholar 

  43. Colton D. (1973) The noncharacteristic Cauchy problem for parabolic equations in two space variables. Proc. Amer. Math. Soc. 41: 551–556

    MATH  MathSciNet  Google Scholar 

  44. Cox D.D. (1983) Asymptotics of M-type smoothing splines. Ann. Statist. 11: 530–551

    MATH  MathSciNet  Google Scholar 

  45. Cucker F., Smale S. (2002) On the mathematical foundations of learning. Bull. Amer. Math. Soc. 39: 1–49

    MATH  MathSciNet  Google Scholar 

  46. L.A. Čudov, Difference schemes and ill-posed problems for partial differential equations (in Russian). Pages 34–62 in Computing methods and programming 8, Izdat. Moskow Univ., 1967.

  47. Cullum J. (1975) Numerical differentiation and regularization. SIAM J. Numer. Anal. 8: 254–265

    MathSciNet  Google Scholar 

  48. A.R. Davies, Optimality in numerical differentiation. Proc. Centre Math. Anal., Austral. Nat. Univ., Canberra, 1988.

  49. Denisov V.N. (1988) Stabilization of the solution of the Cauchy problem for the heat equation. Translated from the Russian original in Soviet Math. Dokl. 37: 688–692

    MATH  MathSciNet  Google Scholar 

  50. Dinh Nho Hao & H. Sahli, Stable analytic continuation by mollification and the fast Fourier transform. Methods of complex and Clifford analysis, 143– 152, SAS int. Publ., Delhi, 2004.

  51. Dolgopolova T.F. (1969/70) Finite-dimensional regularization in numerical differentiation of periodic functions. Ural. Gos. Univ. Mat. Zap. 7: 27–33

    MathSciNet  Google Scholar 

  52. Dolgopolova T.F., Ivanov V.K. (1966) On numerical differentiation. USSR Computational Math. and Math. Phys. 6: 223–232

    MathSciNet  Google Scholar 

  53. Dorroh J.R., Ru X. (1999) The application of the method of quasi-reversibility to the sideways heat equation. J. Math. Anal. Appl. 236: 503–519

    MATH  MathSciNet  Google Scholar 

  54. J. Douglas, A numerical method for analytic continuation. Boundary problems in differential equations, pp. 179–189, University of Wisconsin Press, 1960.

  55. J. Douglas, Approximate continuation of harmonic and parabolic functions. Pages 353–364 in Numerical solution of partial differential equations (Proc. Symp. Univ. Maryland, 1965), Academic Press, 1966.

  56. Duistermaat J.J. (1974) Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math. 27: 207–281

    MATH  MathSciNet  Google Scholar 

  57. R.A. Egorchenkov & Yu.A. Kravtsov, Numerical implementation of complex geometrical optics. Radiophys. and Quantum Electronics 43 (2000), no.7, 569–575 (2001).

  58. R.A. Egorchenkov & Yu.A. Kravtsov, Diffraction of super-Gaussian beams as described by the complex geometrical optics. Radiophys. and Quantum Electronics 43 (2000), no.10, 798–804 (2001).

    Google Scholar 

  59. Egorov Yu.V., Kondratiev V.A. (1989) On a problem of numerical differentiation. Moscow Univ. Math. Bull. 44: 85–87

    MATH  Google Scholar 

  60. Einzinger P., Felsen L.B. (1982) Evanescent waves and complex rays. IEEE, Transactions on Antennas and Propagation AP30: 594–605

    Google Scholar 

  61. Einzinger P., Raz S. (1980) On the asymptotic theory of inhomogeneous wave tracking. Radio Science 15: 763–771

    Google Scholar 

  62. Eldén L. (1987) Approximations for a Cauchy problem for the heat equation. Inverse Problems 3: 263–273

    MATH  MathSciNet  Google Scholar 

  63. Eldén L. (1988) Hyperbolic approximations for a Cauchy problem for the heat equation. Inverse Problems 4: 59–70

    MATH  MathSciNet  Google Scholar 

  64. L.C. Evans, Partial differential equations. Amer. Math. Soc., 1998.

  65. Evgeniou T., Pontil M., Poggio T. (2000) Regularization networks and support vector machines. Advances in Computational Math. 13: 1–50

    MATH  MathSciNet  Google Scholar 

  66. Ewing R.E. (1975) The approximation of certain parabolic equations backward in time by Sobolev equations. SIAM J. Math. Anal. 6: 91–95

    MathSciNet  Google Scholar 

  67. Ewing R.E. (1979) The Cauchy problem for a linear parabolic differential equation. J. Math. Anal. Appl. 71: 167–186

    MATH  MathSciNet  Google Scholar 

  68. Ewing R.E., Falk R.S. (1979) Numerical approximation of a Cauchy problem for a parabolic partial differential equation. Math. Comp. 33: 1125–1144

    MATH  MathSciNet  Google Scholar 

  69. Fedotov A.M. (1992) Theoretical justification of computational algorithms for problems of analytic continuation (in Russian). Siberian Math. J. 33: 511–519

    MathSciNet  Google Scholar 

  70. Fedotov A.M. (1994) Analytic continuation of functions from discrete sets. J. Inverse Ill-Posed Probl. 2: 235–252

    MATH  MathSciNet  Google Scholar 

  71. Felsen L.B. (1976) Complex-source-point solutions of the field equation and their relation to the propagation and scattering of Gaussian beams. Symposia Mathematica 18: 39–56

    MathSciNet  Google Scholar 

  72. Felsen L.B. (1976) Evanescent waves. J. Opt. Soc. Am. 66: 751–760

    Google Scholar 

  73. Franklin J.N. (1974) On Tikhonov method for ill-posed problems. Math. Computation 28: 889–907

    MATH  MathSciNet  Google Scholar 

  74. Franklin J.N. (1990) Analytic continuation by the fast Fourier transform. SIAM J. Statistic. Comput. 11: 112–122

    MATH  MathSciNet  Google Scholar 

  75. Fujiwara H., Imai H., Takeuchi T., Iso Y. (2007) Numerical treatment of analytic continuation with multiple-precision arithmetic. Hokkaido Math. J. 36: 837–847

    MATH  MathSciNet  Google Scholar 

  76. A.A. Fuki & Yu.A. Kravtsov & O.N. Naida, Geometrical optics of weakly anisotropic media. Gordon and Breach Science Publishers, 1998.

  77. Gajewski H., Zacharias K. (1972) Regularizing a class of ill-posed problems for evolution equations (German). J. Math. Anal. Appl. 38: 784–789

    MATH  MathSciNet  Google Scholar 

  78. Goldstein J.A. (1975) Uniqueness in nonlinear Cauchy problems in Banach spaces Proc. Amer. Math. Soc. 53: 91–95

    MATH  Google Scholar 

  79. Groetsch C.W. (1991) Differentiation of approximately specified functions. Amer Math. Monthly 98: 847–850

    MATH  MathSciNet  Google Scholar 

  80. V. Guillemin & S. Sternsberg, Geometric asymptotics. Amer. Math. Soc. 1977.

  81. Gurjanova K.N. (1966) A method of numerical analytic continuation (in Russian) Izv. Vyss. Ucebn. Zaved Matematika 1966: 47–55

    MathSciNet  Google Scholar 

  82. Hadamard J. (1902) Sur les problmes aux dérivées partielles et leur signification physique (in French). Bull. Univ. Princeton 13: 49–52

    MathSciNet  Google Scholar 

  83. J. Hadamard, Lectures on Cauchy’s problem in linear partial differentia equations. Yale University Press, 1923.

  84. G. Hammerlin & K.H. Hoffman (editors), Improperly posed problems and their numerical treatment. Birkhuser, 1983.

  85. Han H., Reinhardt H.J. (1997) Some stability estimates for Cauchy problems fo elliptic equations. J. Inv. Ill-Posed Problems 5: 437–454

    MATH  MathSciNet  Google Scholar 

  86. P.C. Hansen, Rank-deficient and discrete ill-posed problems. SIAM 1998.

  87. Heyman E., Felsen L.B. (1983) Evanescent waves and complex rays for moda propagation in curved open waveguides. SIAM J. Appl. Math. 43: 855–884

    MATH  MathSciNet  Google Scholar 

  88. J. van der Hoeven, On effective analytic continuation. Math. Comput. Sci. (2007) 111–175.

  89. Hofmann B. (1994) On the degree of ill-posedness for nonlinear problems. J. Invers Ill-Posed Problems 2: 61–76

    MATH  Google Scholar 

  90. Huang Y. (2008) Modified quasi-reversibility method for final value problems in Banach spaces. J. Math. Anal. Appl. 340: 757–769

    MATH  MathSciNet  Google Scholar 

  91. Huang Y., Zheng Q. (2004) Regularization for ill-posed Cauchy problems associ ated with generators of analytic semigroups. J. Differ. Equations 203: 38–54

    MATH  MathSciNet  Google Scholar 

  92. V. Isakov, Inverse problems for partial differential equations. Springer, 1998

  93. V.K. Ivanov & V.V. Vasin & V.P. Tanana, Theory of linear ill-posed problem and its applications (in Russian). Izdat. Nauka, Moskow, 1978.

  94. John F. (1955) A note on improper problems in partial differential equations Comm. Pure Appl. Math. 8: 494–495

    Google Scholar 

  95. John F. (1955) Numerical solution of the equation of heat conduction for proceeding times. Ann. Mat. Pura Appl. 40: 129–142

    MATH  MathSciNet  Google Scholar 

  96. John F. (1960) Continuous dependence on data for solutions with a prescribed bound. Comm. Pure Appl. Math. 13: 551–585

    MATH  MathSciNet  Google Scholar 

  97. Johnson L.W., Riess R.D. (1973) An error analysis for numerical differentiation. J. Inst. Math: Appl. 11: 115–120

    MATH  MathSciNet  Google Scholar 

  98. D.S. Jones, The theory of electromagnetism. Pergamon Press, 1964.

  99. Keller J. (1978) Rays, waves and asymptotics. Bull. Amer. Math. Soc. 84: 727–750

    MATH  MathSciNet  Google Scholar 

  100. J.B. Keller & R.M. Lewis, Asymptotic methods for partial differential equations: the reduced wave equation and Maxwells equations. Plenum Press, 1995.

  101. Kenyon R., Okounkov A. (2007) Limit shapes and the complex Burgers equation. Acta Math. 199: 263–302

    MATH  MathSciNet  Google Scholar 

  102. N. Khanal & J. Wu & J.M. Yuan & B.Y. Zhang, Complex-valued Burgers and KdV-Burgers equations. ArXiv:0901.2132v1 [math.AP] 14 Jan 2009.

  103. King J.T., Murio D.A. (1986) Numerical differentiation by finite-dimensional regularization. IMA J. Numer. Anal. 6: 65–85

    MATH  MathSciNet  Google Scholar 

  104. Klibanov M.V., Santosa F. (1991) A computational quasi-reversibility method for Cauchy problem for Laplace’s equation. SIAM J. Appl. Math. 51: 1653–1675

    MATH  MathSciNet  Google Scholar 

  105. Kline M. (1951) An asymptotic solution of Maxwell equation. Comm Pure Appl. Math. 4: 225–262

    MATH  MathSciNet  Google Scholar 

  106. Kline M. (1954) Asymptotic solution of linear hyperbolic partial differential equations. J. Rat. Mech. Anal. 3: 315–342

    MathSciNet  Google Scholar 

  107. M. Kline & J.W. Kay, Electromagnetic theory and geometrical optics. Wiley, 1965.

  108. Knabner P., Vessella S. (1987) Stabilization of ill-posed Cauchy problems for parabolic equations. Ann. Mat. Pura Appl. 149: 393–409

    MATH  MathSciNet  Google Scholar 

  109. R.J. Knops, Instability and the ill-posed Cauchy problem in elasticity. Pages 357–382 in Mechanics of solids, Pergamon Press, 1982.

  110. Knowles I., Wallace R. (1995) A variational method for numerical differentiation. Numer. Math. 70: 91–110

    MATH  MathSciNet  Google Scholar 

  111. Kolpakova E.V. (1976) Numerical solution of the problem of reconstructing the derivative (in Russian). Differencial’nye Uravnenija I Vychisl. Mat. Vyp. 6: 137–143

    MathSciNet  Google Scholar 

  112. Kravtsov Yu.A. (1964) A modification of the geometrical optics method (in Russian). Radiofizika 7: 664–673

    Google Scholar 

  113. Kravtsov Yu.A. (1964) Asymptotic solutions of Maxwells equations near a caustic (in Russian). Radiofizika 7: 1049–1056

    Google Scholar 

  114. Kravtsov Yu.A. (1967) Complex rays and complex caustics (in Russian). Radiofizika 10: 1283–1304

    Google Scholar 

  115. Yu.A. Kravtsov & G.W: Forbes & A.A: Asatryan, Theory and applications of complex rays. Progress in optics, vol. XXXIX, 1–62, North–Holland, 1999.

  116. Yu.A. Kravtsov & Yu.I. Orlov, Geometrical optics of inhomogeneous media. Springer-Verlag, 1990.

  117. Yu.A. Kravtsov & Yu.I. Orlov, Caustics, catastrophes and wave fields. Springer-Verlag, 1999.

  118. R. Lattès, Non-well-set problems and the method of quasi reversibility. Functional Analysis and Optimization pp. 99–113, Academic Press, 1966.

  119. R. Lattès & J.L. Lions, Méthode de quasi-reversibilité et applications (in French). Dunod, 1967.

  120. M.M. Lavrentiev, On the Cauchy problem for Laplace equation (in Russian). Dokl. Akad. Nauk SSSR 102 (1952).

  121. Lavrentiev M.M. (1956) On the Cauchy problem for Laplace equation (in Russian). Izvest. Akad. Nauk SSSR 120: 819–842

    Google Scholar 

  122. Lavrentiev M.M. (1957) On the Cauchy problem for linear elliptic equations of second order (in Russian). Dokl. Akad. Nauk SSSR 112: 195–197

    MATH  MathSciNet  Google Scholar 

  123. M.M. Lavrentiev, Some improperly posed problems of mathematical physics. Springer, 1967.

  124. M.M. Lavrentiev, Improperly posed problems of Mathematical Physics. Amer. Math. Soc., 1986.

  125. Lavrentiev M.M., Amonov B.K. (1975) Determination of the solution of the diffusion equation from its values on discrete sets (in Russian). Dokl. Akad. Nauk SSSR 221: 1284–1285

    MathSciNet  Google Scholar 

  126. M.M. Lavrentiev & V.G. Romanov & S.P. Shishatskii, Ill-posed problems of mathematical physics and analysis. Amer. Math. Soc., 1986.

  127. Lavrentiev M.M., Vasiliev V.G. (1966) On the formulation of some improperly posed problems of mathematical physics (in Russian). Sibirsk Mat. 7: 559–576

    MathSciNet  Google Scholar 

  128. J. D. Lawrence, A catalog of special curves. Dover Publications, 1972.

  129. Levine H.A., Vessella S. (1980) Estimates and regularization for solutions of some ill-posed problems of elliptic and parabolic type. Rend. Circ. Mat. Palermo 123: 161–183

    Google Scholar 

  130. R.M. Lewis, Analytic continuation using numerical methods. Pages 45–81 in: Methods in Computational Physics 4 (B. Adler & S. Fernbach & M. Rotenberg editors), Academic Press 1965.

  131. Lewis R.M., Bleistein N., Ludwig D. (1967) Uniform asymptotic theory of creeping waves. Comm. Pure Appl. Math. 20: 295–328

    MATH  MathSciNet  Google Scholar 

  132. Lions J.L. (1966) Sur la stabilization de certaines problèmes mal posés (in French). Rend. Sem. Mat. Fis. Milano 36: 80–87

    MATH  MathSciNet  Google Scholar 

  133. Lu S., Pereverzev S.V. (2006) Numerical differentiation from a viewpoint of regularization theory. Math. Comp. 75: 1853–1870

    MATH  MathSciNet  Google Scholar 

  134. Lu S., Wang Y.B. (2006) First and second order numerical differentiation with Tikhonov regularization. Front. Math. China 1: 354–367

    MathSciNet  Google Scholar 

  135. Ludwig D. (1966) Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19: 215–250

    MATH  MathSciNet  Google Scholar 

  136. Ludwig D. (1967) Uniform asymptotic expansion of the field scattered by a convex object at high frequencies. Comm. Pure Appl. Math. 20: 103–138

    MATH  MathSciNet  Google Scholar 

  137. R.K. Lunenburg, Mathematical theory of optics. Univ. of California Press, 1964.

  138. Magnanini R., Talenti G. (1999) On complex-valued solutions to a 2-D eikonal equation. Part One: qualitative properties, Contemporary Math. 283: 203–229

    MathSciNet  Google Scholar 

  139. Magnanini R., Talenti G. (2002) On Complex-Valued Solutions to a 2D Eikonal Equation. Part Two: Existence Theorems, SIAM J. Math. Anal. 34: 805–835

    MathSciNet  Google Scholar 

  140. R. Magnanini & G. Talenti, On Complex-Valued Solutions to a 2D Eikonal Equation. Part Three: analysis of a B¨acklund transformation, Appl. Anal. 85, no. 1–3 (2006), 249–276.

    Google Scholar 

  141. R. Magnanini & G. Talenti, Approaching a partial differential equation of mixed elliptic-hyperbolic type. Pages 263–276 in Ill-posed and Inverse Problems (S.I. Kabanikin & V.G. Romanov Editors), VSP, Netherlands (2002).

  142. V.P. Maslov, Ill posed Cauchy problems for ideal gas equations and their regularization. Expos 19 in quations aux drives partielles (Saint Jean de Monts, 1987), cole Polytechnique, 1987.

  143. V.P. Maslov, Resonance ill-posedness (in Russian). Pages 50–62 in Current problems in applied mathematics and in mathematical physics (Russian), Nauka, Moscow, 1988

  144. V.P. Maslov & M.V. Fedoriuk, Semi-classical approximation in quantum mechanics. Reidel Publishing Company, 1981.

  145. V.P. Maslov & G.A. Omel’yanov, Geometric asymptotics for nonlinear PDE. Amer. Math. Soc., 2001.

  146. Miel G., Mooney R. (1985) On the condition number of Lagrangian numerical differentiation. Appl. Math. Comput. 16: 241–252

    MATH  MathSciNet  Google Scholar 

  147. Miller K. (1964) Three circle theorems in partial differential equations and applications to improperly posed problems. Arch. Rational Mech. Anal. 16: 126–154

    MATH  MathSciNet  Google Scholar 

  148. Miller K. (1970) Least square methods for ill-posed problems with a prescribed bound. SIAM J. Math. Anal. 1: 52–74

    MATH  MathSciNet  Google Scholar 

  149. Miller K. (1970) Stabilized numerical analytic prolongation with poles. SIAM J. Appl. Math. 18: 346–363

    MATH  MathSciNet  Google Scholar 

  150. K. Miller, Stabilized numerical methods for location of poles by analytic continuation. Pages 9–20 in Studies in Numerical Analysis 2, Numerical Solutions of Nonlinear Problems, SIAM 1970.

  151. K. Miller, Stabilized quasi-reversibility and other nearly-best-possible methods for non-well-posed problems. Pages 161–176 from Lecture Notes in Mathematics, vol. 316, Springer, 1973.

  152. Miller K., Viano G.A. (1973) On the necessity of nearly-best-possible methods for analytic continuation of scattering data. J. Math. Phys. 14: 1037–1048

    MATH  MathSciNet  Google Scholar 

  153. Monk P. (1986) Error estimates for a numerical method for an ill-posed Cauchy problem for the heat equation. SIAM J. Numer. Anal. 23: 1155–1172

    MATH  MathSciNet  Google Scholar 

  154. V.A. Morozov, Methods for solving incorrectly posed problems. Springer, 1984.

  155. Murio D.A. (1987) Automatic numerical differentiation by discrete mollification. Comput. Math. Appl. 13: 381–386

    MATH  MathSciNet  Google Scholar 

  156. D.A. Murio, The mollification method and the numerical solution of ill-posed problems. John Wiley 1993.

  157. D.A. Murio & L. Guo, Discrete stability analysis of the mollification method for numerical differentiation, Errata. Comput. Math. Appl. 19 (1990) 15–26, Ibidem 20 (1990) 75.

  158. Murio D.A., Mejia C.E., Zhan S. (1998) Discrete mollification and automatic numerical differentiation. Comput. Math. Appl. 35: 1–16

    MathSciNet  Google Scholar 

  159. M.Z. Nashed, On nonlinear ill-posed problems I: Classes of operator equations and minimization of functional. Pages 351–373 in Nonlinear analysis and applications (V. Lakshmikantham editor), Dekker, 1987.

  160. Natterer F. (1977) The finite element method for ill-posed problems. RAIRO Anal. Numer. 11: 271–278

    MATH  MathSciNet  Google Scholar 

  161. F. Natterer, Numerical treatment of ill-posed problems. Pages 142–167 in Inverse Problems (G. Talenti editor), Lecture Notes in Mathematics 1225, Springer 1986.

  162. Oliver J. (1980) An algorithm for numerical differentiation of a function of one real variable. J. Comput. Appl. Math. 6: 145–160

    MATH  MathSciNet  Google Scholar 

  163. Payne L.E. (1960) Bounds in the Cauchy problem for the Laplace equation. Arch. Rational Mech. Anal. 5: 35–45

    MATH  MathSciNet  Google Scholar 

  164. L.E. Payne, On some non well-posed problems for partial differential equations. Pages 239–263 in Numerical solution of nonlinear differential equations (Math. Res. Center Conference, Univ. of Wisconsin), Wiley 1966.

  165. Payne L.E. (1970) On a priori bounds in the Cauchy problem for elliptic equations SIAM J. Math. Anal. 1: 82–89

    MATH  Google Scholar 

  166. L.E. Payne, Some general remarks on improperly posed problems for partia differential equations. Pages 1–30 in Symposium on non-well-posed problem and logarithmic convexity, Lecture Notes in Math. 316, Springer, 1973.

  167. L.E. Payne, Improperly posed problems in partial differential equations. Re gional Conference Series in Applied Math. no.22, SIAM, 1975.

  168. L.E. Payne, On the stabilization of ill-posed Cauchy problems in nonlinea elasticity. Pages 1–10 in Problems of elastic stability and vibrations (Pitts burgh, 1981), Contemp. Math. 4, Amer. Math. Soc., 1981.

  169. Payne L.E. (1985) Improved stability estimates for classes of ill-posed Cauchy prob lems. Applicable Anal. 19: 63–74

    MATH  MathSciNet  Google Scholar 

  170. L.E. Payne, On stabilizing ill-posed Cauchy problems for the Navier-Stoke equations. Pages 261–271 in Differential equations with applications to math ematical physics, Math. Sci. Engineering 192, Academic Press, 1993.

  171. Payne L.E., Sather D. (1967) On some non-well-posed Cauchy problems for quasi linear equations of mixed type. Trans. Amer. Math. Soc. 128: 135–141

    MATH  MathSciNet  Google Scholar 

  172. Payne L.E., Sather D. (1968) On an initial-boundary value problem for a class o degenerate elliptic operators. Ann. Mat. Pura Appl. 78: 323–338

    MATH  MathSciNet  Google Scholar 

  173. Pham Minh Hien (2002) A stable marching difference scheme for an ill-posed Cauchy problem for the three-dimensional Laplace equation. Vietnam J Math. 30: 79–88

    MATH  MathSciNet  Google Scholar 

  174. P. Poláčik & V. Šverák, Zeros of complex caloric functions and singularities o complex viscous Burgers equation. ArXiv:math.AP/0612506v1 18 Dec 2006

  175. A.P. Prudnikov & Yu.A. Brychkov & O.I. Marichev, Integrals and series Vol. 1: Elementary Functions. New York, Gordon & Breach, 1986.

  176. Pucci C. (1953) Studio col metodo delle differenze di un problema di Cauchy rel ativo ad equazioni alle derivate parziali del second’ordine di tipo parabolico (in Italian). Ann. Scuola Norm. Sup. Pisa 7: 205–215

    MATH  MathSciNet  Google Scholar 

  177. Pucci C. (1955) Sui problem di Cauchy non ben posti (in Italian). Atti Accad. Naz Lincei Rend. Cl. Sci. Fis. Mat. Natur. 18: 473–477

    MATH  MathSciNet  Google Scholar 

  178. Pucci C. (1958) Discussione del problema di Cauchy per le equazioni di tipo ellittico (in Italian). Ann. Mat. Pura Appl. (4) 46: 131–154

    MATH  MathSciNet  Google Scholar 

  179. Pucci C. (1959) Alcune limitazioni per le soluzioni di equazioni di tipo parabolico (in Italian). Ann. Mat. Pura Appl. 48: 161–172

    MATH  MathSciNet  Google Scholar 

  180. Ramm A.G. (1968) Numerical differentiation. Izv. Vyss. Ucebn. Zaved. Matematika 11: 131–134

    MathSciNet  Google Scholar 

  181. A.G. Ramm, On stable numerical differentiation. Aust. J. Math. Anal. Appl 5 (2008).

  182. Ramm A.G., Smirnova A.B. (2001) On stable numerical differentiation. Math. Comp. 70: 1131–1153

    MATH  MathSciNet  Google Scholar 

  183. Ranjbar Z., Eldén L. (2007) Numerical analysis of an ill-posed Cauchy problem for a convection-diffusion equation. Inverse Probl. Sci. Eng. 15: 191–211

    MathSciNet  Google Scholar 

  184. J. Rauch, Lectures on geometric optics. Pages 385–466 in Hyperbolic equations and Frequency Interactionsn (L. Caffarelli & W. E Editors). Amer. Math. Soc., 1999.

  185. Reinhardt H.J., Han H., Hao D.N. (1999) Stability and regularization of a discrete approximation to the Cauchy problem for Laplace equation. SIAM J. Numer. Anal. 36: 890–905

    MathSciNet  Google Scholar 

  186. H.J. Reinhardt & F. Seiffarth, On the approximate solution of ill-posed Cauchy problems for parabolic differential equations. Pages 284–298 in Inverse problems: principles and applications in geophysics, technology, and medicine (Potsdam, 1993), Math. Res. 74, Akademie-Verlag, 1993.

  187. Reichel L. (1986) Numerical methods for analytic continuation and mesh generation. Constr. Approx. 2: 23–39

    MATH  MathSciNet  Google Scholar 

  188. Rice J., Rosenblatt M. (1983) Smoothing splines: regression, derivatives and disconvolution. Ann. Statist. 11: 141–156

    MATH  MathSciNet  Google Scholar 

  189. R.D. Richtmyer, Principles of advanced mathematical physics, vol. 1. Springer, 1978.

  190. R.T. Rockafellar, Convex Analysis. Princeton Univ. Press, 1970.

  191. Romanov V.G. (2008) A stability estimate for the solution to the ill-posed Cauchy problem for elasticity equations. J. Inverse Ill-Posed Problems 16: 615–623

    MATH  MathSciNet  Google Scholar 

  192. Sabba Stefanescu I. (1986) On the stable analytic continuation with a condition of uniform boundedness. J. Math. Phys. 27: 2657–2686

    MATH  MathSciNet  Google Scholar 

  193. Sakalauskas E.I. (1984) The Galerkin-Tikhonov method of regularization in the problem of numerical differentiation (in Russian). Zh. Vychisl. Mat. I Mat. Fiz. 11: 1742–1747

    MathSciNet  Google Scholar 

  194. Saylor R. (1967) Numerical elliptic continuation. SIAM J. Numer. Anal. 4: 575–581

    MATH  MathSciNet  Google Scholar 

  195. D. von Seggern, CRC Standard curves and surfaces. CRC Press, 1993.

  196. Showalter R.E. (1974) The final value problem for evolution equations. J. Math. Anal. Appl. 47: 563–572

    MATH  MathSciNet  Google Scholar 

  197. R.E. Showalter, Quasi-reversibility of first and second order parabolic equations. Pages 76–84 in Research Notes in Mathematics, no.1, Pitman, 1975.

  198. Smale S., Zhou D-X (2003) Estimating the approximation error in learning theory. Anal. Appl. (Singap.) 1: 17–41

    MATH  MathSciNet  Google Scholar 

  199. Smale S., Zhou D-X (2004) Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. 41: 279–305

    MATH  MathSciNet  Google Scholar 

  200. Smale S., Zhou D-X (2005) Shannon sampling. II. Connections to learning theory Appl. Comput. Harmon. Anal. 19: 285–302

    MATH  MathSciNet  Google Scholar 

  201. Smale S., Zhou D-X (2007) Learning theory estimates via integral operators and their approximations. Constr. Approx. 26: 153–172

    MATH  MathSciNet  Google Scholar 

  202. S. Steinberg, Some unusual ill-posed Cauchy problems and their applications Pages 17–23 in Improperly posed boundary value problems (Conf. Univ. New Mexico, 1974), Res. Notes in Math. 1, Pitman, 1975.

  203. Strom T., Lyness J.N. (1975) On numerical differentiation. BIT 15: 314–322

    MathSciNet  Google Scholar 

  204. Surova N.S. (1977) An inverstigation of the problem of reconstructing a derivativ by using an optimal regularizing integral operator. Numer. Methods Pro gramming 1: 30–34

    MathSciNet  Google Scholar 

  205. G. Talenti, Sui problemi mal posti (in Italian). Bollettino U.M.I. 15-A (1978) 1–29.

  206. Tikhonov A.N. (1944) On stability of inverse problems (in Russian). Dokl. Akad Nauk. SSSR 39: 195–198

    Google Scholar 

  207. Tikhonov A.N. (1963) On the solution of ill-posed problems and the method o regularization (in Russian). Dokl. Akad. Nauk. SSSR 151: 501–504

    MathSciNet  Google Scholar 

  208. Tikhonov A.N. (1963) On the regularization of ill-posed problems (in Russian) Dokl. Akad. Nauk. SSSR 153: 49–52

    Google Scholar 

  209. Tikhonov A.N. (1965) Improperly posed problems of linear algebra and a stabl method for their solution (in Russian). Dokl. Akad. Nauk SSSR 163: 591–594

    MathSciNet  Google Scholar 

  210. Tikhonov A.N. (1968) On methods of solving incorrect problems. Translated from the Russian original in Amer. Math. Soc. Transl. (2) 70: 222–224

    Google Scholar 

  211. A.N. Tikhonov & V.Ya. Arsenin, Solution of Ill-Posed Problems.Wiley, 1977

  212. A.N. Tikhonov & A.V. Goncharsky & V.V. Stepanov & A.G. Yagola, Nu merical methods for the solution of ill-posed problems. Mathematics and it Applications 328, Kluwer, 1995.

  213. A.N. Tikhonov & A.S. Leonov & A.G. Yagola, Nonlinear ill-posed prob lems, vol. 1 and 2, Applied Mathematics and Mathematical Computation 14, Chapman & Hall, 1998.

  214. D.D. Trong & N.H. Tuan, Stabilized quasi-reversibility method or a class o nonlinear ill-posed problems. Electron. J. Differential Equations 84 (2008 pp. 35–55.

    Google Scholar 

  215. M.M. Uzakov, Stability in multidimensional problems of analytic continuation (in Russian). Questions of well-posedness and methods for the investigation of inverse problems, 129–141, Vychisl. Tsentr, Novosibirsk, 1986.

  216. Vasin V.V. (1973) The stable evaluation of a derivative in space C(−∞, ∞) (in Russian). USSR Computational Math. and Math. Phys 13: 16–24

    MATH  MathSciNet  Google Scholar 

  217. V. Vapnik, Structure of statistical learning theory. John Wiley 1996.

  218. V. Vapnik, Statistical learning theory. John Wiley 1998.

  219. V. Vapnik, The nature of statistical learning theory. Springer-Verlag 2000.

  220. V. Vapnik, Estimation of dependence based on empirical data. Springer-Verlag 2006.

  221. Vessella S. (1999) A continuous dependence result in the analytic continuation problem. Forum Math. 11: 695–703

    MATH  MathSciNet  Google Scholar 

  222. N.A. Vrobeva & L.S. Frank & L.A. udov, Difference methods of solution of an ill-posed Cauchy problem for the three-dimensional Laplace equation (in Russian). Pages 147–155 in Computing methods and programming 11: numerical methods in gas dynamics, Izdat. Moskow Univ., 1968.

  223. Vu Kim Tuan (2000) Stable analytic continuation using hypergeometric summation. Inverse Problems 16: 75–87

    MATH  MathSciNet  Google Scholar 

  224. Walter G.G. (1989) An alternative approach to ill-posed problems. J. Integral Equations Appl. 1: 287–301

    Google Scholar 

  225. Wang J. (2007) Wavelet approach to numerical differentiation of noisy functions. Commun. Pure Appl. Anal. 6: 873–897

    MATH  MathSciNet  Google Scholar 

  226. B.Ts. Zhamsoev, Estimates of stability in problems of analytic continuation (in Russian). Methods for solving inverse problems, 52–64, Vychisl. Tsentr, Novosibirsk, 1983.

  227. D. Zwillinger, Handbook of differential equations. Academic Press, 1984.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Talenti.

Additional information

Lecture held by G. Talenti in the Seminario Matematico e Fisico on February 23, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnanini, R., Talenti, G. On Complex-valued 2D Eikonals. Part Four: Continuation Past a Caustic. Milan J. Math. 77, 1–66 (2009). https://doi.org/10.1007/s00032-009-0103-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-009-0103-x

Mathematics Subject Classification (2000)

Keywords

Navigation