Skip to main content
Log in

Equidistribution rates, closed string amplitudes, and the Riemann hypothesis

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study asymptotic relations connecting unipotent averages of \( {\text{Sp}}\left( {2g,\mathbb{Z}} \right) \) automorphic forms to their integrals over the moduli space of principally polarized abelian varieties. We obtain reformulations of the Riemann hypothesis as a class of problems concerning the computation of the equidistribution convergence rate in those asymptotic relations. We discuss applications of our results to closed string amplitudes. Remarkably, the Riemann hypothesis can be rephrased in terms of ultraviolet relations occurring in perturbative closed string theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Furstenberg, The Unique Ergodicity of the Horocycle Flow, Recent Advances in Topological Dynamics, A. Beck eds., Springer Verlag Lecture Notes 318 (1972) 95.

  2. S.G. Dani and J. Smillie, Uniform distribution of horocycle orbits for Fuchsian groups, Duke Math. J. 51 (1984) 185.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Ratner, Distribution rigidity for unipotent actions on homogeneous spaces, Bull. Amer. Math. Soc. 24 (1991) 321.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991) 235.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Zagier, Eisenstein Series and the Riemann zeta function, Automorphic Forms, Representation Theory and Arithmetic, Studies in Math. Vol. 10, T.I.F.R., Bombay India (1981), pg. 275.

    Google Scholar 

  6. D. Zagier, The Rankin-Selberg method for authomorphic functions which are not of rapid decay, in J. Fac. Sci., Tokyo Japan (1981).

  7. P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math. 34 (1981) 719.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Verjovsky, Arithmetic geometry and dynamics in the unit tangent bundle of the modular orbifold, in Dynamical Systems, Longman Sci. Tech., Harlow U.S.A. (1993), pg. 263.

    Google Scholar 

  9. R. Rankin, Contributions to the theory of Ramanujan’s function τ(n) and symilar arithmetical functions. I and II, Proc. Cambridge Philos. Soc. 35 (1939) 351.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Selberg, Bemerkungen ùber eine Dirichletsche reihe, die mit der theorie der modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940) 47.

    MathSciNet  Google Scholar 

  11. M. Cardella, A novel method for computing torus amplitudes for \( {\mathbb{Z}_N} \) orbifolds without the unfolding technique, JHEP 05 (2009) 010 [arXiv:0812.1549] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Kutasov and N. Seiberg, Number of degrees of freedom, density of states and tachyons in string theory and CFT , Nucl. Phys. B 358 (1991) 600 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Angelantonj, M. Cardella, S. Elitzur and E. Rabinovici, On the dependence of the effective number of closed strings degrees of freedom on the Riemann zeros, to appear.

  14. E. D’Hoker and D.H. Phong, Two-Loop Superstrings I, Main Formulas, Phys. Lett. B 529 (2002) 241 [hep-th/0110247] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  15. E. D’Hoker and D.H. Phong, Two-Loop Superstrings II, The Chiral Measure on Moduli Space, Nucl. Phys. B 636 (2002) 3 [hep-th/0110283] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  16. E. D’Hoker and D.H. Phong, Two-Loop Superstrings III, Slice Independence and Absence of Ambiguities, Nucl. Phys. B 636 (2002) 61 [hep-th/0111016] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  17. E. D’Hoker and D.H. Phong, Two-Loop Superstrings IV, The Cosmological Constant and Modular Forms, Nucl. Phys. B 639 (2002) 129 [hep-th/0111040] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  18. E. D’Hoker and D.H. Phong, Asyzygies, modular forms and the superstring measure. I, Nucl. Phys. B 710 (2005) 58 [hep-th/0411159] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  19. E. D’Hoker and D.H. Phong, Asyzygies, modular forms and the superstring measure. II, Nucl. Phys. B 710 (2005) 83 [hep-th/0411182] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  20. S.L. Cacciatori and F. Dalla Piazza, Two loop superstring amplitudes and S 6 representations, Lett. Math. Phys. 83 (2008) 127 [arXiv:0707.0646] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. S.L. Cacciatori, F. Dalla Piazza and B. van Geemen, Modular Forms and Three Loop Superstring Amplitudes, Nucl. Phys. B 800 (2008) 565 [arXiv:0801.2543] [SPIRES].

    Article  ADS  Google Scholar 

  22. S.L. Cacciatori, F.D. Piazza and B. van Geemen, Genus four superstring measures, Lett. Math. Phys. 85 (2008) 185 [arXiv:0804.0457] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. F.D. Piazza and B. van Geemen, Siegel modular forms and finite symplectic groups, arXiv:0804.3769 [SPIRES].

  24. S. Grushevsky, Superstring scattering amplitudes in higher genus, Commun. Math. Phys. 287 (2009) 749 [arXiv:0803.3469] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. A. Morozov, NSR Superstring Measures Revisited, JHEP 05 (2008) 086 [arXiv:0804.3167] [SPIRES].

    Article  ADS  Google Scholar 

  26. T. Yamazaki, Rankin-Selberg method for Siegel cusp forms, Najoya Math J. 120 (1990) 35.

    MATH  Google Scholar 

  27. K. Hulek, C. Kahn and S. Weintraub, Moduli Spaces of Abelian Surfaces: Compactification, Degenerations, and Theta Functions, De Gruyter Expositions in Mathematics. Vol. 12, Walter de Gruyterv & Co, Berlin Germany (1993).

    Book  Google Scholar 

  28. G. van der Geer, Siegel modular forms and their applications in The 1-2-3 of Modular Forms, Springer, Heidelberg Germany (2008).

    Google Scholar 

  29. A. Andrianov, Introduction to Siegel Modular forms and Dirichlet Series, Springer, Heidelberg Germany (2009).

    Book  MATH  Google Scholar 

  30. C.L. Siegel, Symplectic geometry, Amer. J. Math. 65 (1943) 1.

    Article  MathSciNet  Google Scholar 

  31. C.L. Siegel, Zur Bestimmung des Volumens des Fundamental Bereichs der unimodularen Gruppe, Math. Ann. 137 (1959) 427.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Cardella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cacciatori, S.L., Cardella, M. Equidistribution rates, closed string amplitudes, and the Riemann hypothesis. J. High Energ. Phys. 2010, 25 (2010). https://doi.org/10.1007/JHEP12(2010)025

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2010)025

Keywords

Navigation