Skip to main content
Log in

Natural SUSY from SU(5) orbifold GUT

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a realistic 5D orbifold GUT model that can reduce to natural (or radiative natural) supersymmetry as the low energy effective theory. Supersymmetry as well as gauge symmetry are broken by the twist boundary conditions. We find that it is non-trivial to introduce other flavor symmetry other than the SU(2) R R-symmetry. We ameliorate the tension between the small number of free parameters and the successful electroweak symmetry breaking by introducing non-minimal Kahler potentials. A large trilinear term A t , which is necessary to give a 125 GeV Higgs boson, is naturally provided in our scenario. A scan under current experimental constraints shows that our model can realize natural (or radiative natural) supersymmetry. Only radiative natural supersymmetry can naturally lead to 125 GeV higgs. Additional dark matter species other than neutralino (like axion) are needed to provide enough relic density. Relatively large stop masses are necessary to give realistic higg mass in most of the parameter spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  3. J.R. Ellis, S. Kelley and D.V. Nanopoulos, Precision LEP data, supersymmetric GUTs and string unification, Phys. Lett. B 249 (1990) 441 [INSPIRE].

    Article  ADS  Google Scholar 

  4. J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].

    Article  ADS  Google Scholar 

  5. U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].

    Article  ADS  Google Scholar 

  6. P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].

    ADS  Google Scholar 

  7. H. Georgi and S. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].

    Article  ADS  Google Scholar 

  8. H. Georgi, Particles And Fields: Williamsburg 1974. AIP Conference Proceedings No. 23, C.E. Carlson ed., (1975).

  9. H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. H. Georgi and D.V. Nanopoulos, Ordinary Predictions from Grand Principles: T Quark Mass in O(10), Nucl. Phys. B 155 (1979) 52 [INSPIRE].

    Article  ADS  Google Scholar 

  11. Y. Kawamura, Gauge symmetry breaking from extra space S 1 /Z(2), Prog. Theor. Phys. 103 (2000) 613 [hep-ph/9902423] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. Y. Kawamura, Triplet doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [INSPIRE].

    Article  ADS  Google Scholar 

  13. Y. Kawamura, Split multiplets, coupling unification and extra dimension, Prog. Theor. Phys. 105 (2001) 691 [hep-ph/0012352] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. G. Altarelli and F. Feruglio, SU(5) grand unification in extra dimensions and proton decay, Phys. Lett. B 511 (2001) 257 [hep-ph/0102301] [INSPIRE].

    Article  ADS  Google Scholar 

  15. L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [INSPIRE].

    ADS  Google Scholar 

  16. A. Hebecker and J. March-Russell, The structure of GUT breaking by orbifolding, Nucl. Phys. B 625 (2002) 128 [hep-ph/0107039] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Hebecker and J. March-Russell, A minimal S 1 /(Z 2 × \( Z_2^{\prime } \)) orbifold GUT, Nucl. Phys. B 613 (2001) 3 [hep-ph/0106166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. T.-j. Li, GUT breaking on M 4 × T 2 /(Z 2 × \( Z_2^{\prime } \)), Phys. Lett. B 520 (2001) 377 [hep-th/0107136] [INSPIRE].

    Article  ADS  Google Scholar 

  19. T.-J. Li, N=2 supersymmetric GUT breaking on T 2 orbifolds, Nucl. Phys. B 619 (2001) 75 [hep-ph/0108120] [INSPIRE].

    Article  ADS  Google Scholar 

  20. C. Balázs, T.-J. Li, F. Wang and J.M. Yang, Low-Scale SU(4)(W) Unification, JHEP 09 (2009) 015 [arXiv:0905.2346] [INSPIRE].

    Article  ADS  Google Scholar 

  21. C. Balázs, Z. Kang, T. Li, F. Wang and J.M. Yang, Realistic Flipped SU(5) from Orbifold SO(10), JHEP 02 (2010) 096 [arXiv:0911.1006] [INSPIRE].

    Article  ADS  Google Scholar 

  22. T. Li and D.V. Nanopoulos, General Gauge and Anomaly Mediated Supersymmetry Breaking in Grand Unified Theories with Vector-Like Particles, JHEP 10 (2011) 090 [arXiv:1005.3798] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  24. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. R. Kitano and Y. Nomura, A solution to the supersymmetric fine-tuning problem within the MSSM, Phys. Lett. B 631 (2005) 58 [hep-ph/0509039] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].

    ADS  Google Scholar 

  27. H. Baer, V. Barger, P. Huang and X. Tata, Natural Supersymmetry: LHC, dark matter and ILC searches, JHEP 05 (2012) 109 [arXiv:1203.5539] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Cao, C. Han, L. Wu, J.M. Yang and Y. Zhang, Probing Natural SUSY from Stop Pair Production at the LHC, JHEP 11 (2012) 039 [arXiv:1206.3865] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J. Cao, Z. Heng, T. Liu and J.M. Yang, Di-photon Higgs signal at the LHC: A comparative study for different supersymmetric models, Phys. Lett. B 703 (2011) 462 [arXiv:1103.0631] [INSPIRE].

    Article  ADS  Google Scholar 

  32. H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Radiative natural SUSY with a 125 GeV Higgs boson, Phys. Rev. Lett. 109 (2012) 161802 [arXiv:1207.3343] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally Supersymmetric Grand Unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].

    Article  ADS  Google Scholar 

  34. H.P. Nilles, Dynamically Broken Supergravity and the Hierarchy Problem, Phys. Lett. B 115 (1982) 193 [INSPIRE].

    Article  ADS  Google Scholar 

  35. L.E. Ibáñez, Locally Supersymmetric SU(5) Grand Unification, Phys. Lett. B 118 (1982) 73 [INSPIRE].

    Article  ADS  Google Scholar 

  36. R. Barbieri, S. Ferrara and C.A. Savoy, Gauge Models with Spontaneously Broken Local Supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  37. H.P. Nilles, M. Srednicki and D. Wyler, Weak Interaction Breakdown Induced by Supergravity, Phys. Lett. B 120 (1983) 346 [INSPIRE].

    Article  ADS  Google Scholar 

  38. J.R. Ellis, D.V. Nanopoulos and K. Tamvakis, Grand Unification in Simple Supergravity, Phys. Lett. B 121 (1983) 123 [INSPIRE].

    Article  ADS  Google Scholar 

  39. J.R. Ellis, J. Hagelin, D.V. Nanopoulos and K. Tamvakis, Weak Symmetry Breaking by Radiative Corrections in Broken Supergravity, Phys. Lett. B 125 (1983) 275 [INSPIRE].

    Article  ADS  Google Scholar 

  40. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].

    ADS  Google Scholar 

  41. C. Balázs, T. Li, D.V. Nanopoulos and F. Wang, Supersymmetry Breaking Scalar Masses and Trilinear Soft Terms in Generalized Minimal Supergravity, JHEP 09 (2010) 003 [arXiv:1006.5559] [INSPIRE].

    Article  ADS  Google Scholar 

  42. F. Wang, Supersymmetry Breaking Scalar Masses and Trilinear Soft Terms From High-Dimensional Operators in E 6 SUSY GUT, Nucl. Phys. B 851 (2011) 104 [arXiv:1103.0069] [INSPIRE].

    Article  ADS  Google Scholar 

  43. N. Arkani-Hamed, L.J. Hall, D. Tucker-Smith and N. Weiner, Exponentially small supersymmetry breaking from extra dimensions, Phys. Rev. D 63 (2001) 056003 [hep-ph/9911421] [INSPIRE].

    ADS  Google Scholar 

  44. N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in 4−D superspace, JHEP 03 (2002) 055 [hep-th/0101233] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. A. Pomarol and M. Quirós, The standard model from extra dimensions, Phys. Lett. B 438 (1998) 255 [hep-ph/9806263] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Quirós, New ideas in symmetry breaking, hep-ph/0302189 [INSPIRE].

  47. R. Barbieri, L.J. Hall and Y. Nomura, Softly broken supersymmetric desert from orbifold compactification, Phys. Rev. D 66 (2002) 045025 [hep-ph/0106190] [INSPIRE].

    ADS  Google Scholar 

  48. R. Barbieri, L.J. Hall and Y. Nomura, Models of Scherk-Schwarz symmetry breaking in 5-D: Classification and calculability, Nucl. Phys. B 624 (2002) 63 [hep-th/0107004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. H. Murayama, Y. Nomura, S. Shirai and K. Tobioka, Compact Supersymmetry, Phys. Rev. D 86 (2012) 115014 [arXiv:1206.4993] [INSPIRE].

    ADS  Google Scholar 

  50. J. Scherk and J.H. Schwarz, Spontaneous Breaking of Supersymmetry Through Dimensional Reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].

    Article  ADS  Google Scholar 

  51. J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. E. Cremmer, J. Scherk and J.H. Schwarz, Spontaneously Broken N = 8 Supergravity, Phys. Lett. B 84 (1979) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  53. I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. I. Antoniadis, S. Dimopoulos, A. Pomarol and M. Quirós, Soft masses in theories withsupersymmetry breaking by TeV compactification, Nucl. Phys. B 544 (1999) 503 [hep-ph/9810410] [INSPIRE].

    Article  ADS  Google Scholar 

  55. R. Barbieri, L.J. Hall and Y. Nomura, Softly broken supersymmetric desert from orbifold compactification, Phys. Rev. D 66 (2002) 045025 [hep-ph/0106190] [INSPIRE].

    ADS  Google Scholar 

  56. F.Y. Khalili, Optimal configurations of filter cavity in future gravitational-wave detectors, Phys. Rev. D 81 (2010) 122002 [arXiv:1003.2859] [INSPIRE].

    ADS  Google Scholar 

  57. H. Terashima, Path integral derivation of Brown-Henneauxs central charge, Phys. Rev. D 64 (2001) 064016 [hep-th/0102097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  58. W.D. Goldberger and M.B. Wise, Bulk fields in the Randall-Sundrum compactification scenario, Phys. Rev. D 60 (1999) 107505 [hep-ph/9907218] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. M. Dine, R.G. Leigh and A. Kagan, Flavor symmetries and the problem of squark degeneracy, Phys. Rev. D 48 (1993) 4269 [hep-ph/9304299] [INSPIRE].

    ADS  Google Scholar 

  60. E. Dudas, G. von Gersdorff, S. Pokorski and R. Ziegler, Linking Natural Supersymmetry to Flavour Physics, arXiv:1308.1090 [INSPIRE].

  61. R. Barbieri, G. Dvali and L.J. Hall, Predictions from a U(2) flavor symmetry in supersymmetric theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [INSPIRE].

    Article  ADS  Google Scholar 

  62. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  63. C. Wymant, Optimising Stop Naturalness, Phys. Rev. D 86 (2012) 115023 [arXiv:1208.1737] [INSPIRE].

    ADS  Google Scholar 

  64. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

    ADS  Google Scholar 

  65. A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  66. Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].

  67. LHCb collaboration, Strong constraints on the rare decays B s μ + μ and B 0μ + μ , Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].

    Article  Google Scholar 

  68. WMAP collaboration, J. Dunkley et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [INSPIRE].

    Article  ADS  Google Scholar 

  69. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  70. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  71. M. Davier, A. Hoecker, B. Malaescu, C. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e π + π cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [INSPIRE].

    Article  ADS  Google Scholar 

  72. G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  73. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: Version 1.3, Comput. Phys. Commun. 174 (2006) 577 [hep-ph/0405253] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  74. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  75. A. Crivellin et al., SUSY FLAVOR v2: A computational tool for FCNC and CP-violating processes in the MSSM, Comput. Phys. Commun. 184 (2013) 1004 [arXiv:1203.5023] [INSPIRE].

    Article  ADS  Google Scholar 

  76. E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Slim SUSY, Phys. Lett. B 722 (2013) 100 [arXiv:1301.0708] [INSPIRE].

    Article  ADS  Google Scholar 

  77. H. Baer, Radiative natural supersymmetry with mixed axion/higgsino cold dark matter, AIP Conf. Proc. 1534 (2012) 39 [arXiv:1210.7852] [INSPIRE].

    ADS  Google Scholar 

  78. K.-Y. Choi, J.E. Kim, H.M. Lee and O. Seto, Neutralino dark matter from heavy axino decay, Phys. Rev. D 77 (2008) 123501 [arXiv:0801.0491] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Additional information

ArXiv ePrint: 1304.5724

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, C., Wang, F. & Yang, J.M. Natural SUSY from SU(5) orbifold GUT. J. High Energ. Phys. 2013, 197 (2013). https://doi.org/10.1007/JHEP11(2013)197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)197

Keywords

Navigation