Skip to main content
Log in

Gaugomaly mediation revisited

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Most generic models of hidden sector supersymmetry breaking do not feature singlets, and gauginos obtain masses from anomaly mediated supersymmetry breaking. If one desires a natural model, then the dominant contribution to scalar masses should be of the same order, i.e. also from AMSB. However, pure AMSB models suffer from the tachyonic slepton problem. Moreover, there is a large splitting between the gluino and the wino LSP masses resulting in tight exclusion limits from typical superpartner searches. We introduce messenger fields into this framework to obtain a hybrid theory of gauge and anomaly mediation, solving both problems simultaneously. Specifically, we find any number of vector-like messenger fields (allowed by GUT unification) compress the predicted gaugino spectrum when their masses come from the Giudice-Masiero mechanism. This more compressed spectrum is less constrained by LHC searches and allows for lighter gluinos. In addition to the model, we present gaugino pole mass equations that differ from (and correct) the original literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    Article  ADS  Google Scholar 

  3. CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012) 171803 [arXiv:1207.1898] [INSPIRE].

    Article  ADS  Google Scholar 

  4. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb−1 of \( \sqrt{s}=7 \) TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949] [INSPIRE].

    ADS  Google Scholar 

  5. CMS collaboration, Search for new physics in the multijets and missing momentum final state in proton-proton collisions at 8 TeV, CMS-PAS-SUS-13-012, CERN, Geneva Switzerland (2013).

  6. CMS collaboration, Search for supersymmetry using razor variables in events with b-jets in pp collisions at 8 TeV, CMS-PAS-SUS-13-004, CERN, Geneva Switzerland (2013).

  7. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb−1 of \( \sqrt{s}=8 \) TeV proton-proton collision data, ATLAS-CONF-2013-047, CERN, Geneva Switzerland (2013).

  8. ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb−1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-061, CERN, Geneva Switzerland (2013).

  9. Z. Chacko and M.A. Luty, Realistic anomaly mediation with bulk gauge fields, JHEP 05 (2002) 047 [hep-ph/0112172] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. A.E. Nelson and N.J. Weiner, Gauge/anomaly Syzygy and generalized brane world models of supersymmetry breaking, Phys. Rev. Lett. 88 (2002) 231802 [hep-ph/0112210] [INSPIRE].

    Article  ADS  Google Scholar 

  11. E. Poppitz and S.P. Trivedi, Some remarks on gauge mediated supersymmetry breaking, Phys. Lett. B 401 (1997) 38 [hep-ph/9703246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Sundrum, ‘Gaugomalymediated SUSY breaking and conformal sequestering, Phys. Rev. D 71 (2005) 085003 [hep-th/0406012] [INSPIRE].

    ADS  Google Scholar 

  13. A.E. Nelson and N.J. Weiner, Extended anomaly mediation and new physics at 10 TeV, hep-ph/0210288 [INSPIRE].

  14. G. Giudice and A. Masiero, A natural solution to the μ problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].

    Article  ADS  Google Scholar 

  15. K. Hsieh and M.A. Luty, Mixed gauge and anomaly mediation from new physics at 10 TeV, JHEP 06 (2007) 062 [hep-ph/0604256] [INSPIRE].

    Article  ADS  Google Scholar 

  16. Y. Cai and M.A. Luty, Minimal gaugomaly mediation, JHEP 12 (2010) 037 [arXiv:1008.2024] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. T.J. LeCompte and S.P. Martin, Compressed supersymmetry after 1 fb−1 at the Large Hadron Collider, Phys. Rev. D 85 (2012) 035023 [arXiv:1111.6897] [INSPIRE].

    ADS  Google Scholar 

  18. T. Gherghetta, G.F. Giudice and J.D. Wells, Phenomenological consequences of supersymmetry with anomaly induced masses, Nucl. Phys. B 559 (1999) 27 [hep-ph/9904378] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the minimal supersymmetric Standard Model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [INSPIRE].

    ADS  Google Scholar 

  21. S.P. Martin, Generalized messengers of supersymmetry breaking and the sparticle mass spectrum, Phys. Rev. D 55 (1997) 3177 [hep-ph/9608224] [INSPIRE].

    ADS  Google Scholar 

  22. J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Searching for directly decaying gluinos at the Tevatron, Phys. Lett. B 666 (2008) 34 [arXiv:0803.0019] [INSPIRE].

    Article  ADS  Google Scholar 

  23. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].

  24. C. Csáki, A. Falkowski, Y. Nomura and T. Volansky, New approach to the μ-Bμ problem of gauge-mediated supersymmetry breaking, Phys. Rev. Lett. 102 (2009) 111801 [arXiv:0809.4492] [INSPIRE].

    Article  ADS  Google Scholar 

  25. G. Dvali, G. Giudice and A. Pomarol, The μ problem in theories with gauge mediated supersymmetry breaking, Nucl. Phys. B 478 (1996) 31 [hep-ph/9603238] [INSPIRE].

    Article  ADS  Google Scholar 

  26. ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-014, CERN, Geneva Switzerland (2013).

  27. CMS collaboration, Combination of Standard Model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005, CERN, Geneva Switzerland (2013).

  28. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

    ADS  Google Scholar 

  29. N. Craig, S. Knapen, D. Shih and Y. Zhao, A complete model of low-scale gauge mediation, JHEP 03 (2013) 154 [arXiv:1206.4086] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpit Gupta.

Additional information

ArXiv ePrint: 1212.6969

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A., Kaplan, D.E. & Zorawski, T. Gaugomaly mediation revisited. J. High Energ. Phys. 2013, 149 (2013). https://doi.org/10.1007/JHEP11(2013)149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)149

Keywords

Navigation